This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eltrrels3 | ⊢ ( 𝑅 ∈ TrRels ↔ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ∧ 𝑅 ∈ Rels ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftrrels3 | ⊢ TrRels = { 𝑟 ∈ Rels ∣ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) } | |
| 2 | breq | ⊢ ( 𝑟 = 𝑅 → ( 𝑥 𝑟 𝑦 ↔ 𝑥 𝑅 𝑦 ) ) | |
| 3 | breq | ⊢ ( 𝑟 = 𝑅 → ( 𝑦 𝑟 𝑧 ↔ 𝑦 𝑅 𝑧 ) ) | |
| 4 | 2 3 | anbi12d | ⊢ ( 𝑟 = 𝑅 → ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) ↔ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) |
| 5 | breq | ⊢ ( 𝑟 = 𝑅 → ( 𝑥 𝑟 𝑧 ↔ 𝑥 𝑅 𝑧 ) ) | |
| 6 | 4 5 | imbi12d | ⊢ ( 𝑟 = 𝑅 → ( ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ↔ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
| 7 | 6 | 2albidv | ⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
| 8 | 7 | albidv | ⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
| 9 | 1 8 | rabeqel | ⊢ ( 𝑅 ∈ TrRels ↔ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ∧ 𝑅 ∈ Rels ) ) |