This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eltrrels3 | |- ( R e. TrRels <-> ( A. x A. y A. z ( ( x R y /\ y R z ) -> x R z ) /\ R e. Rels ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftrrels3 | |- TrRels = { r e. Rels | A. x A. y A. z ( ( x r y /\ y r z ) -> x r z ) } |
|
| 2 | breq | |- ( r = R -> ( x r y <-> x R y ) ) |
|
| 3 | breq | |- ( r = R -> ( y r z <-> y R z ) ) |
|
| 4 | 2 3 | anbi12d | |- ( r = R -> ( ( x r y /\ y r z ) <-> ( x R y /\ y R z ) ) ) |
| 5 | breq | |- ( r = R -> ( x r z <-> x R z ) ) |
|
| 6 | 4 5 | imbi12d | |- ( r = R -> ( ( ( x r y /\ y r z ) -> x r z ) <-> ( ( x R y /\ y R z ) -> x R z ) ) ) |
| 7 | 6 | 2albidv | |- ( r = R -> ( A. y A. z ( ( x r y /\ y r z ) -> x r z ) <-> A. y A. z ( ( x R y /\ y R z ) -> x R z ) ) ) |
| 8 | 7 | albidv | |- ( r = R -> ( A. x A. y A. z ( ( x r y /\ y r z ) -> x r z ) <-> A. x A. y A. z ( ( x R y /\ y R z ) -> x R z ) ) ) |
| 9 | 1 8 | rabeqel | |- ( R e. TrRels <-> ( A. x A. y A. z ( ( x R y /\ y R z ) -> x R z ) /\ R e. Rels ) ) |