This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of the set of subsets with two elements is a proper unordered pair. (Contributed by AV, 1-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elss2prb | ⊢ ( 𝑃 ∈ { 𝑧 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑧 ) = 2 } ↔ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqeq2 | ⊢ ( 𝑧 = 𝑃 → ( ( ♯ ‘ 𝑧 ) = 2 ↔ ( ♯ ‘ 𝑃 ) = 2 ) ) | |
| 2 | 1 | elrab | ⊢ ( 𝑃 ∈ { 𝑧 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑧 ) = 2 } ↔ ( 𝑃 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) ) |
| 3 | hash2prb | ⊢ ( 𝑃 ∈ 𝒫 𝑉 → ( ( ♯ ‘ 𝑃 ) = 2 ↔ ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) ) | |
| 4 | elpwi | ⊢ ( 𝑃 ∈ 𝒫 𝑉 → 𝑃 ⊆ 𝑉 ) | |
| 5 | ssrexv | ⊢ ( 𝑃 ⊆ 𝑉 → ( ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑃 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑃 ∈ 𝒫 𝑉 → ( ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑃 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) ) |
| 7 | ssrexv | ⊢ ( 𝑃 ⊆ 𝑉 → ( ∃ 𝑦 ∈ 𝑃 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) → ∃ 𝑦 ∈ 𝑉 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) ) | |
| 8 | 4 7 | syl | ⊢ ( 𝑃 ∈ 𝒫 𝑉 → ( ∃ 𝑦 ∈ 𝑃 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) → ∃ 𝑦 ∈ 𝑉 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) ) |
| 9 | 8 | reximdv | ⊢ ( 𝑃 ∈ 𝒫 𝑉 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑃 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) ) |
| 10 | 6 9 | syld | ⊢ ( 𝑃 ∈ 𝒫 𝑉 → ( ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) ) |
| 11 | 3 10 | sylbid | ⊢ ( 𝑃 ∈ 𝒫 𝑉 → ( ( ♯ ‘ 𝑃 ) = 2 → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) ) |
| 12 | 11 | imp | ⊢ ( ( 𝑃 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) |
| 13 | prelpwi | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → { 𝑥 , 𝑦 } ∈ 𝒫 𝑉 ) | |
| 14 | 13 | adantr | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) → { 𝑥 , 𝑦 } ∈ 𝒫 𝑉 ) |
| 15 | eleq1 | ⊢ ( 𝑃 = { 𝑥 , 𝑦 } → ( 𝑃 ∈ 𝒫 𝑉 ↔ { 𝑥 , 𝑦 } ∈ 𝒫 𝑉 ) ) | |
| 16 | 15 | ad2antll | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) → ( 𝑃 ∈ 𝒫 𝑉 ↔ { 𝑥 , 𝑦 } ∈ 𝒫 𝑉 ) ) |
| 17 | 14 16 | mpbird | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) → 𝑃 ∈ 𝒫 𝑉 ) |
| 18 | fveq2 | ⊢ ( 𝑃 = { 𝑥 , 𝑦 } → ( ♯ ‘ 𝑃 ) = ( ♯ ‘ { 𝑥 , 𝑦 } ) ) | |
| 19 | 18 | ad2antll | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) → ( ♯ ‘ 𝑃 ) = ( ♯ ‘ { 𝑥 , 𝑦 } ) ) |
| 20 | hashprg | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 ≠ 𝑦 ↔ ( ♯ ‘ { 𝑥 , 𝑦 } ) = 2 ) ) | |
| 21 | 20 | biimpcd | ⊢ ( 𝑥 ≠ 𝑦 → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ♯ ‘ { 𝑥 , 𝑦 } ) = 2 ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ♯ ‘ { 𝑥 , 𝑦 } ) = 2 ) ) |
| 23 | 22 | impcom | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) → ( ♯ ‘ { 𝑥 , 𝑦 } ) = 2 ) |
| 24 | 19 23 | eqtrd | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) → ( ♯ ‘ 𝑃 ) = 2 ) |
| 25 | 17 24 | jca | ⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ∧ ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) → ( 𝑃 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) ) |
| 26 | 25 | ex | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) → ( 𝑃 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) ) ) |
| 27 | 26 | rexlimivv | ⊢ ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) → ( 𝑃 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) ) |
| 28 | 12 27 | impbii | ⊢ ( ( 𝑃 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) ↔ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) |
| 29 | 2 28 | bitri | ⊢ ( 𝑃 ∈ { 𝑧 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑧 ) = 2 } ↔ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ( 𝑥 ≠ 𝑦 ∧ 𝑃 = { 𝑥 , 𝑦 } ) ) |