This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of size two is an unordered pair of elements of its superset. (Contributed by Alexander van der Vekens, 12-Jul-2017) (Proof shortened by AV, 4-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hash2sspr | ⊢ ( ( 𝑃 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑃 = { 𝑎 , 𝑏 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqeq2 | ⊢ ( 𝑝 = 𝑃 → ( ( ♯ ‘ 𝑝 ) = 2 ↔ ( ♯ ‘ 𝑃 ) = 2 ) ) | |
| 2 | 1 | elrab | ⊢ ( 𝑃 ∈ { 𝑝 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑝 ) = 2 } ↔ ( 𝑃 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) ) |
| 3 | elss2prb | ⊢ ( 𝑃 ∈ { 𝑝 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑝 ) = 2 } ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑃 = { 𝑎 , 𝑏 } ) ) | |
| 4 | simpr | ⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑃 = { 𝑎 , 𝑏 } ) → 𝑃 = { 𝑎 , 𝑏 } ) | |
| 5 | 4 | reximi | ⊢ ( ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑃 = { 𝑎 , 𝑏 } ) → ∃ 𝑏 ∈ 𝑉 𝑃 = { 𝑎 , 𝑏 } ) |
| 6 | 5 | reximi | ⊢ ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑃 = { 𝑎 , 𝑏 } ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑃 = { 𝑎 , 𝑏 } ) |
| 7 | 3 6 | sylbi | ⊢ ( 𝑃 ∈ { 𝑝 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑝 ) = 2 } → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑃 = { 𝑎 , 𝑏 } ) |
| 8 | 2 7 | sylbir | ⊢ ( ( 𝑃 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑃 ) = 2 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 𝑃 = { 𝑎 , 𝑏 } ) |