This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A vector belonging to both a subspace and the span of the singleton of a vector not in it must be zero. (Contributed by NM, 17-Dec-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elspansn5 | ⊢ ( 𝐴 ∈ Sℋ → ( ( ( 𝐵 ∈ ℋ ∧ ¬ 𝐵 ∈ 𝐴 ) ∧ ( 𝐶 ∈ ( span ‘ { 𝐵 } ) ∧ 𝐶 ∈ 𝐴 ) ) → 𝐶 = 0ℎ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elspansn4 | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ( span ‘ { 𝐵 } ) ∧ 𝐶 ≠ 0ℎ ) ) → ( 𝐵 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) | |
| 2 | 1 | biimprd | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ( span ‘ { 𝐵 } ) ∧ 𝐶 ≠ 0ℎ ) ) → ( 𝐶 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
| 3 | 2 | exp32 | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐶 ∈ ( span ‘ { 𝐵 } ) → ( 𝐶 ≠ 0ℎ → ( 𝐶 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) ) ) |
| 4 | 3 | com34 | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐶 ∈ ( span ‘ { 𝐵 } ) → ( 𝐶 ∈ 𝐴 → ( 𝐶 ≠ 0ℎ → 𝐵 ∈ 𝐴 ) ) ) ) |
| 5 | 4 | imp32 | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ( span ‘ { 𝐵 } ) ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐶 ≠ 0ℎ → 𝐵 ∈ 𝐴 ) ) |
| 6 | 5 | necon1bd | ⊢ ( ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ( span ‘ { 𝐵 } ) ∧ 𝐶 ∈ 𝐴 ) ) → ( ¬ 𝐵 ∈ 𝐴 → 𝐶 = 0ℎ ) ) |
| 7 | 6 | exp31 | ⊢ ( 𝐴 ∈ Sℋ → ( 𝐵 ∈ ℋ → ( ( 𝐶 ∈ ( span ‘ { 𝐵 } ) ∧ 𝐶 ∈ 𝐴 ) → ( ¬ 𝐵 ∈ 𝐴 → 𝐶 = 0ℎ ) ) ) ) |
| 8 | 7 | com34 | ⊢ ( 𝐴 ∈ Sℋ → ( 𝐵 ∈ ℋ → ( ¬ 𝐵 ∈ 𝐴 → ( ( 𝐶 ∈ ( span ‘ { 𝐵 } ) ∧ 𝐶 ∈ 𝐴 ) → 𝐶 = 0ℎ ) ) ) ) |
| 9 | 8 | imp4c | ⊢ ( 𝐴 ∈ Sℋ → ( ( ( 𝐵 ∈ ℋ ∧ ¬ 𝐵 ∈ 𝐴 ) ∧ ( 𝐶 ∈ ( span ‘ { 𝐵 } ) ∧ 𝐶 ∈ 𝐴 ) ) → 𝐶 = 0ℎ ) ) |