This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the span of a singleton. All members are collinear with the generating vector. (Contributed by NM, 5-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elspansn2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) → ( 𝐴 ∈ ( span ‘ { 𝐵 } ) ↔ 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spansn | ⊢ ( 𝐵 ∈ ℋ → ( span ‘ { 𝐵 } ) = ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝐵 ∈ ℋ → ( 𝐴 ∈ ( span ‘ { 𝐵 } ) ↔ 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) ) |
| 3 | 2 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) → ( 𝐴 ∈ ( span ‘ { 𝐵 } ) ↔ 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) ) |
| 4 | eleq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) ) | |
| 5 | id | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) | |
| 6 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 ·ih 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) ) | |
| 7 | 6 | oveq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) = ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ) |
| 8 | 7 | oveq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) = ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) |
| 9 | 5 8 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) ) |
| 10 | 4 9 | bibi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) ) ) |
| 11 | 10 | imbi2d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝐵 ≠ 0ℎ → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) ) ↔ ( 𝐵 ≠ 0ℎ → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) ) ) ) |
| 12 | neeq1 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( 𝐵 ≠ 0ℎ ↔ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ≠ 0ℎ ) ) | |
| 13 | sneq | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → { 𝐵 } = { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) | |
| 14 | 13 | fveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ⊥ ‘ { 𝐵 } ) = ( ⊥ ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) |
| 15 | 14 | fveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) = ( ⊥ ‘ ( ⊥ ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) ) |
| 16 | 15 | eleq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ( ⊥ ‘ ( ⊥ ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) ) ) |
| 17 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) | |
| 18 | oveq1 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( 𝐵 ·ih 𝐵 ) = ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ·ih 𝐵 ) ) | |
| 19 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ·ih 𝐵 ) = ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) | |
| 20 | 18 19 | eqtrd | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( 𝐵 ·ih 𝐵 ) = ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) |
| 21 | 17 20 | oveq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) = ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) / ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
| 22 | id | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) | |
| 23 | 21 22 | oveq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) = ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) / ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) |
| 24 | 23 | eqeq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) / ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
| 25 | 16 24 | bibi12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ( ⊥ ‘ ( ⊥ ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) / ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) ) |
| 26 | 12 25 | imbi12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( 𝐵 ≠ 0ℎ → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) ) ↔ ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ≠ 0ℎ → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ( ⊥ ‘ ( ⊥ ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) / ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) ) ) |
| 27 | ifhvhv0 | ⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ | |
| 28 | ifhvhv0 | ⊢ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ∈ ℋ | |
| 29 | 27 28 | h1de2bi | ⊢ ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ≠ 0ℎ → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ( ⊥ ‘ ( ⊥ ‘ { if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) } ) ) ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) / ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
| 30 | 11 26 29 | dedth2h | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐵 ≠ 0ℎ → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) ) ) |
| 31 | 30 | 3impia | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) ) |
| 32 | 3 31 | bitrd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) → ( 𝐴 ∈ ( span ‘ { 𝐵 } ) ↔ 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) ) |