This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a singleton in Hilbert space equals its closure. (Contributed by NM, 4-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spansn | ⊢ ( 𝐴 ∈ ℋ → ( span ‘ { 𝐴 } ) = ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → { 𝐴 } = { if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) } ) | |
| 2 | 1 | fveq2d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( span ‘ { 𝐴 } ) = ( span ‘ { if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) } ) ) |
| 3 | 1 | fveq2d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ⊥ ‘ { 𝐴 } ) = ( ⊥ ‘ { if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) } ) ) |
| 4 | 3 | fveq2d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) = ( ⊥ ‘ ( ⊥ ‘ { if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) } ) ) ) |
| 5 | 2 4 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( span ‘ { 𝐴 } ) = ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ↔ ( span ‘ { if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) } ) = ( ⊥ ‘ ( ⊥ ‘ { if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) } ) ) ) ) |
| 6 | ifhvhv0 | ⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ | |
| 7 | 6 | spansni | ⊢ ( span ‘ { if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) } ) = ( ⊥ ‘ ( ⊥ ‘ { if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) } ) ) |
| 8 | 5 7 | dedth | ⊢ ( 𝐴 ∈ ℋ → ( span ‘ { 𝐴 } ) = ( ⊥ ‘ ( ⊥ ‘ { 𝐴 } ) ) ) |