This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the range of a restricted operation class abstraction. (Contributed by Thierry Arnoux, 25-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rngop.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
| Assertion | elrnmpores | ⊢ ( 𝐷 ∈ 𝑉 → ( 𝐷 ∈ ran ( 𝐹 ↾ 𝑅 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝐷 = 𝐶 ∧ 𝑥 𝑅 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngop.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
| 2 | eqeq1 | ⊢ ( 𝑧 = 𝐷 → ( 𝑧 = 𝐶 ↔ 𝐷 = 𝐶 ) ) | |
| 3 | 2 | anbi1d | ⊢ ( 𝑧 = 𝐷 → ( ( 𝑧 = 𝐶 ∧ 𝑥 𝑅 𝑦 ) ↔ ( 𝐷 = 𝐶 ∧ 𝑥 𝑅 𝑦 ) ) ) |
| 4 | 3 | anbi2d | ⊢ ( 𝑧 = 𝐷 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑥 𝑅 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐷 = 𝐶 ∧ 𝑥 𝑅 𝑦 ) ) ) ) |
| 5 | 4 | 2exbidv | ⊢ ( 𝑧 = 𝐷 → ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑥 𝑅 𝑦 ) ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐷 = 𝐶 ∧ 𝑥 𝑅 𝑦 ) ) ) ) |
| 6 | an12 | ⊢ ( ( 𝑝 ∈ 𝑅 ∧ ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ) ) ↔ ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑝 ∈ 𝑅 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ) ) ) | |
| 7 | an12 | ⊢ ( ( 𝑝 ∈ 𝑅 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝑅 ∧ 𝑧 = 𝐶 ) ) ) | |
| 8 | ancom | ⊢ ( ( 𝑧 = 𝐶 ∧ 𝑝 ∈ 𝑅 ) ↔ ( 𝑝 ∈ 𝑅 ∧ 𝑧 = 𝐶 ) ) | |
| 9 | eleq1 | ⊢ ( 𝑝 = 〈 𝑥 , 𝑦 〉 → ( 𝑝 ∈ 𝑅 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) ) | |
| 10 | df-br | ⊢ ( 𝑥 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) | |
| 11 | 9 10 | bitr4di | ⊢ ( 𝑝 = 〈 𝑥 , 𝑦 〉 → ( 𝑝 ∈ 𝑅 ↔ 𝑥 𝑅 𝑦 ) ) |
| 12 | 11 | anbi2d | ⊢ ( 𝑝 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑧 = 𝐶 ∧ 𝑝 ∈ 𝑅 ) ↔ ( 𝑧 = 𝐶 ∧ 𝑥 𝑅 𝑦 ) ) ) |
| 13 | 8 12 | bitr3id | ⊢ ( 𝑝 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑝 ∈ 𝑅 ∧ 𝑧 = 𝐶 ) ↔ ( 𝑧 = 𝐶 ∧ 𝑥 𝑅 𝑦 ) ) ) |
| 14 | 13 | anbi2d | ⊢ ( 𝑝 = 〈 𝑥 , 𝑦 〉 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝑅 ∧ 𝑧 = 𝐶 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑥 𝑅 𝑦 ) ) ) ) |
| 15 | 7 14 | bitrid | ⊢ ( 𝑝 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑝 ∈ 𝑅 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑥 𝑅 𝑦 ) ) ) ) |
| 16 | 15 | pm5.32i | ⊢ ( ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑝 ∈ 𝑅 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ) ) ↔ ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑥 𝑅 𝑦 ) ) ) ) |
| 17 | 6 16 | bitri | ⊢ ( ( 𝑝 ∈ 𝑅 ∧ ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ) ) ↔ ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑥 𝑅 𝑦 ) ) ) ) |
| 18 | 17 | 2exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑝 ∈ 𝑅 ∧ ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ) ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑥 𝑅 𝑦 ) ) ) ) |
| 19 | 19.42vv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑝 ∈ 𝑅 ∧ ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ) ) ↔ ( 𝑝 ∈ 𝑅 ∧ ∃ 𝑥 ∃ 𝑦 ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ) ) ) | |
| 20 | 18 19 | bitr3i | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑥 𝑅 𝑦 ) ) ) ↔ ( 𝑝 ∈ 𝑅 ∧ ∃ 𝑥 ∃ 𝑦 ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ) ) ) |
| 21 | 20 | opabbii | ⊢ { 〈 𝑝 , 𝑧 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑥 𝑅 𝑦 ) ) ) } = { 〈 𝑝 , 𝑧 〉 ∣ ( 𝑝 ∈ 𝑅 ∧ ∃ 𝑥 ∃ 𝑦 ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ) ) } |
| 22 | dfoprab2 | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑥 𝑅 𝑦 ) ) } = { 〈 𝑝 , 𝑧 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑥 𝑅 𝑦 ) ) ) } | |
| 23 | df-mpo | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } | |
| 24 | dfoprab2 | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } = { 〈 𝑝 , 𝑧 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ) } | |
| 25 | 1 23 24 | 3eqtri | ⊢ 𝐹 = { 〈 𝑝 , 𝑧 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ) } |
| 26 | 25 | reseq1i | ⊢ ( 𝐹 ↾ 𝑅 ) = ( { 〈 𝑝 , 𝑧 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ) } ↾ 𝑅 ) |
| 27 | resopab | ⊢ ( { 〈 𝑝 , 𝑧 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ) } ↾ 𝑅 ) = { 〈 𝑝 , 𝑧 〉 ∣ ( 𝑝 ∈ 𝑅 ∧ ∃ 𝑥 ∃ 𝑦 ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ) ) } | |
| 28 | 26 27 | eqtri | ⊢ ( 𝐹 ↾ 𝑅 ) = { 〈 𝑝 , 𝑧 〉 ∣ ( 𝑝 ∈ 𝑅 ∧ ∃ 𝑥 ∃ 𝑦 ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ) ) } |
| 29 | 21 22 28 | 3eqtr4ri | ⊢ ( 𝐹 ↾ 𝑅 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑥 𝑅 𝑦 ) ) } |
| 30 | 29 | rneqi | ⊢ ran ( 𝐹 ↾ 𝑅 ) = ran { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑥 𝑅 𝑦 ) ) } |
| 31 | rnoprab | ⊢ ran { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑥 𝑅 𝑦 ) ) } = { 𝑧 ∣ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑥 𝑅 𝑦 ) ) } | |
| 32 | 30 31 | eqtri | ⊢ ran ( 𝐹 ↾ 𝑅 ) = { 𝑧 ∣ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑥 𝑅 𝑦 ) ) } |
| 33 | 5 32 | elab2g | ⊢ ( 𝐷 ∈ 𝑉 → ( 𝐷 ∈ ran ( 𝐹 ↾ 𝑅 ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐷 = 𝐶 ∧ 𝑥 𝑅 𝑦 ) ) ) ) |
| 34 | r2ex | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝐷 = 𝐶 ∧ 𝑥 𝑅 𝑦 ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐷 = 𝐶 ∧ 𝑥 𝑅 𝑦 ) ) ) | |
| 35 | 33 34 | bitr4di | ⊢ ( 𝐷 ∈ 𝑉 → ( 𝐷 ∈ ran ( 𝐹 ↾ 𝑅 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝐷 = 𝐶 ∧ 𝑥 𝑅 𝑦 ) ) ) |