This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Abstract builder using the constant wff T. . (Contributed by Thierry Arnoux, 4-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rabtru.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| Assertion | rabtru | ⊢ { 𝑥 ∈ 𝐴 ∣ ⊤ } = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabtru.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | tru | ⊢ ⊤ | |
| 3 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 4 | nftru | ⊢ Ⅎ 𝑥 ⊤ | |
| 5 | biidd | ⊢ ( 𝑥 = 𝑦 → ( ⊤ ↔ ⊤ ) ) | |
| 6 | 3 1 4 5 | elrabf | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ⊤ } ↔ ( 𝑦 ∈ 𝐴 ∧ ⊤ ) ) |
| 7 | 2 6 | mpbiran2 | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ⊤ } ↔ 𝑦 ∈ 𝐴 ) |
| 8 | 7 | eqriv | ⊢ { 𝑥 ∈ 𝐴 ∣ ⊤ } = 𝐴 |