This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of Quine p. 44. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003) (Revised by Mario Carneiro, 12-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elabgf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| elabgf.2 | ⊢ Ⅎ 𝑥 𝜓 | ||
| elabgf.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | elabgf | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabgf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | elabgf.2 | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | elabgf.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | nfab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∣ 𝜑 } | |
| 5 | 1 4 | nfel | ⊢ Ⅎ 𝑥 𝐴 ∈ { 𝑥 ∣ 𝜑 } |
| 6 | 5 2 | nfbi | ⊢ Ⅎ 𝑥 ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) |
| 7 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝐴 ∈ { 𝑥 ∣ 𝜑 } ) ) | |
| 8 | 7 3 | bibi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜑 ) ↔ ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) ) |
| 9 | abid | ⊢ ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜑 ) | |
| 10 | 1 6 8 9 | vtoclgf | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) |