This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality and membership rule for pairs. (Contributed by Scott Fenton, 7-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elpreqpr | ⊢ ( 𝐴 ∈ { 𝐵 , 𝐶 } → ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐴 , 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri | ⊢ ( 𝐴 ∈ { 𝐵 , 𝐶 } → ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) | |
| 2 | elex | ⊢ ( 𝐴 ∈ { 𝐵 , 𝐶 } → 𝐴 ∈ V ) | |
| 3 | elpreqprlem | ⊢ ( 𝐵 ∈ V → ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐵 , 𝑥 } ) | |
| 4 | eleq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∈ V ↔ 𝐵 ∈ V ) ) | |
| 5 | preq1 | ⊢ ( 𝐴 = 𝐵 → { 𝐴 , 𝑥 } = { 𝐵 , 𝑥 } ) | |
| 6 | 5 | eqeq2d | ⊢ ( 𝐴 = 𝐵 → ( { 𝐵 , 𝐶 } = { 𝐴 , 𝑥 } ↔ { 𝐵 , 𝐶 } = { 𝐵 , 𝑥 } ) ) |
| 7 | 6 | exbidv | ⊢ ( 𝐴 = 𝐵 → ( ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐴 , 𝑥 } ↔ ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐵 , 𝑥 } ) ) |
| 8 | 4 7 | imbi12d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ∈ V → ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐴 , 𝑥 } ) ↔ ( 𝐵 ∈ V → ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐵 , 𝑥 } ) ) ) |
| 9 | 3 8 | mpbiri | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ∈ V → ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐴 , 𝑥 } ) ) |
| 10 | 9 | imp | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐴 ∈ V ) → ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐴 , 𝑥 } ) |
| 11 | elpreqprlem | ⊢ ( 𝐶 ∈ V → ∃ 𝑥 { 𝐶 , 𝐵 } = { 𝐶 , 𝑥 } ) | |
| 12 | prcom | ⊢ { 𝐶 , 𝐵 } = { 𝐵 , 𝐶 } | |
| 13 | 12 | eqeq1i | ⊢ ( { 𝐶 , 𝐵 } = { 𝐶 , 𝑥 } ↔ { 𝐵 , 𝐶 } = { 𝐶 , 𝑥 } ) |
| 14 | 13 | exbii | ⊢ ( ∃ 𝑥 { 𝐶 , 𝐵 } = { 𝐶 , 𝑥 } ↔ ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐶 , 𝑥 } ) |
| 15 | 11 14 | sylib | ⊢ ( 𝐶 ∈ V → ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐶 , 𝑥 } ) |
| 16 | eleq1 | ⊢ ( 𝐴 = 𝐶 → ( 𝐴 ∈ V ↔ 𝐶 ∈ V ) ) | |
| 17 | preq1 | ⊢ ( 𝐴 = 𝐶 → { 𝐴 , 𝑥 } = { 𝐶 , 𝑥 } ) | |
| 18 | 17 | eqeq2d | ⊢ ( 𝐴 = 𝐶 → ( { 𝐵 , 𝐶 } = { 𝐴 , 𝑥 } ↔ { 𝐵 , 𝐶 } = { 𝐶 , 𝑥 } ) ) |
| 19 | 18 | exbidv | ⊢ ( 𝐴 = 𝐶 → ( ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐴 , 𝑥 } ↔ ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐶 , 𝑥 } ) ) |
| 20 | 16 19 | imbi12d | ⊢ ( 𝐴 = 𝐶 → ( ( 𝐴 ∈ V → ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐴 , 𝑥 } ) ↔ ( 𝐶 ∈ V → ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐶 , 𝑥 } ) ) ) |
| 21 | 15 20 | mpbiri | ⊢ ( 𝐴 = 𝐶 → ( 𝐴 ∈ V → ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐴 , 𝑥 } ) ) |
| 22 | 21 | imp | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐴 ∈ V ) → ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐴 , 𝑥 } ) |
| 23 | 10 22 | jaoian | ⊢ ( ( ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ∧ 𝐴 ∈ V ) → ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐴 , 𝑥 } ) |
| 24 | 1 2 23 | syl2anc | ⊢ ( 𝐴 ∈ { 𝐵 , 𝐶 } → ∃ 𝑥 { 𝐵 , 𝐶 } = { 𝐴 , 𝑥 } ) |