This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class is a positive rational iff it is the quotient of two positive integers. (Contributed by AV, 30-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elpqb | |- ( ( A e. QQ /\ 0 < A ) <-> E. x e. NN E. y e. NN A = ( x / y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpq | |- ( ( A e. QQ /\ 0 < A ) -> E. x e. NN E. y e. NN A = ( x / y ) ) |
|
| 2 | nnz | |- ( x e. NN -> x e. ZZ ) |
|
| 3 | znq | |- ( ( x e. ZZ /\ y e. NN ) -> ( x / y ) e. QQ ) |
|
| 4 | 2 3 | sylan | |- ( ( x e. NN /\ y e. NN ) -> ( x / y ) e. QQ ) |
| 5 | nnre | |- ( x e. NN -> x e. RR ) |
|
| 6 | nngt0 | |- ( x e. NN -> 0 < x ) |
|
| 7 | 5 6 | jca | |- ( x e. NN -> ( x e. RR /\ 0 < x ) ) |
| 8 | nnre | |- ( y e. NN -> y e. RR ) |
|
| 9 | nngt0 | |- ( y e. NN -> 0 < y ) |
|
| 10 | 8 9 | jca | |- ( y e. NN -> ( y e. RR /\ 0 < y ) ) |
| 11 | divgt0 | |- ( ( ( x e. RR /\ 0 < x ) /\ ( y e. RR /\ 0 < y ) ) -> 0 < ( x / y ) ) |
|
| 12 | 7 10 11 | syl2an | |- ( ( x e. NN /\ y e. NN ) -> 0 < ( x / y ) ) |
| 13 | 4 12 | jca | |- ( ( x e. NN /\ y e. NN ) -> ( ( x / y ) e. QQ /\ 0 < ( x / y ) ) ) |
| 14 | eleq1 | |- ( A = ( x / y ) -> ( A e. QQ <-> ( x / y ) e. QQ ) ) |
|
| 15 | breq2 | |- ( A = ( x / y ) -> ( 0 < A <-> 0 < ( x / y ) ) ) |
|
| 16 | 14 15 | anbi12d | |- ( A = ( x / y ) -> ( ( A e. QQ /\ 0 < A ) <-> ( ( x / y ) e. QQ /\ 0 < ( x / y ) ) ) ) |
| 17 | 13 16 | syl5ibrcom | |- ( ( x e. NN /\ y e. NN ) -> ( A = ( x / y ) -> ( A e. QQ /\ 0 < A ) ) ) |
| 18 | 17 | rexlimivv | |- ( E. x e. NN E. y e. NN A = ( x / y ) -> ( A e. QQ /\ 0 < A ) ) |
| 19 | 1 18 | impbii | |- ( ( A e. QQ /\ 0 < A ) <-> E. x e. NN E. y e. NN A = ( x / y ) ) |