This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the partial mapping operation. ( A ^pm B ) is the set of all partial functions that map from B to A . (Contributed by NM, 15-Nov-2007) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pmvalg | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 ↑pm 𝐵 ) = { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 | ⊢ { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ⊆ 𝒫 ( 𝐵 × 𝐴 ) | |
| 2 | xpexg | ⊢ ( ( 𝐵 ∈ 𝐷 ∧ 𝐴 ∈ 𝐶 ) → ( 𝐵 × 𝐴 ) ∈ V ) | |
| 3 | 2 | ancoms | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐵 × 𝐴 ) ∈ V ) |
| 4 | 3 | pwexd | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → 𝒫 ( 𝐵 × 𝐴 ) ∈ V ) |
| 5 | ssexg | ⊢ ( ( { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ⊆ 𝒫 ( 𝐵 × 𝐴 ) ∧ 𝒫 ( 𝐵 × 𝐴 ) ∈ V ) → { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ∈ V ) | |
| 6 | 1 4 5 | sylancr | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ∈ V ) |
| 7 | elex | ⊢ ( 𝐴 ∈ 𝐶 → 𝐴 ∈ V ) | |
| 8 | elex | ⊢ ( 𝐵 ∈ 𝐷 → 𝐵 ∈ V ) | |
| 9 | xpeq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑦 × 𝑥 ) = ( 𝑦 × 𝐴 ) ) | |
| 10 | 9 | pweqd | ⊢ ( 𝑥 = 𝐴 → 𝒫 ( 𝑦 × 𝑥 ) = 𝒫 ( 𝑦 × 𝐴 ) ) |
| 11 | 10 | rabeqdv | ⊢ ( 𝑥 = 𝐴 → { 𝑓 ∈ 𝒫 ( 𝑦 × 𝑥 ) ∣ Fun 𝑓 } = { 𝑓 ∈ 𝒫 ( 𝑦 × 𝐴 ) ∣ Fun 𝑓 } ) |
| 12 | xpeq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 × 𝐴 ) = ( 𝐵 × 𝐴 ) ) | |
| 13 | 12 | pweqd | ⊢ ( 𝑦 = 𝐵 → 𝒫 ( 𝑦 × 𝐴 ) = 𝒫 ( 𝐵 × 𝐴 ) ) |
| 14 | 13 | rabeqdv | ⊢ ( 𝑦 = 𝐵 → { 𝑓 ∈ 𝒫 ( 𝑦 × 𝐴 ) ∣ Fun 𝑓 } = { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ) |
| 15 | df-pm | ⊢ ↑pm = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ { 𝑓 ∈ 𝒫 ( 𝑦 × 𝑥 ) ∣ Fun 𝑓 } ) | |
| 16 | 11 14 15 | ovmpog | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ∈ V ) → ( 𝐴 ↑pm 𝐵 ) = { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ) |
| 17 | 16 | 3expia | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ∈ V → ( 𝐴 ↑pm 𝐵 ) = { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ) ) |
| 18 | 7 8 17 | syl2an | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ∈ V → ( 𝐴 ↑pm 𝐵 ) = { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ) ) |
| 19 | 6 18 | mpd | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 ↑pm 𝐵 ) = { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ) |