This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a partial function". (Contributed by Mario Carneiro, 14-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elpmg | |- ( ( A e. V /\ B e. W ) -> ( C e. ( A ^pm B ) <-> ( Fun C /\ C C_ ( B X. A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmvalg | |- ( ( A e. V /\ B e. W ) -> ( A ^pm B ) = { g e. ~P ( B X. A ) | Fun g } ) |
|
| 2 | 1 | eleq2d | |- ( ( A e. V /\ B e. W ) -> ( C e. ( A ^pm B ) <-> C e. { g e. ~P ( B X. A ) | Fun g } ) ) |
| 3 | funeq | |- ( g = C -> ( Fun g <-> Fun C ) ) |
|
| 4 | 3 | elrab | |- ( C e. { g e. ~P ( B X. A ) | Fun g } <-> ( C e. ~P ( B X. A ) /\ Fun C ) ) |
| 5 | 2 4 | bitrdi | |- ( ( A e. V /\ B e. W ) -> ( C e. ( A ^pm B ) <-> ( C e. ~P ( B X. A ) /\ Fun C ) ) ) |
| 6 | 5 | biancomd | |- ( ( A e. V /\ B e. W ) -> ( C e. ( A ^pm B ) <-> ( Fun C /\ C e. ~P ( B X. A ) ) ) ) |
| 7 | elex | |- ( C e. ~P ( B X. A ) -> C e. _V ) |
|
| 8 | 7 | a1i | |- ( ( A e. V /\ B e. W ) -> ( C e. ~P ( B X. A ) -> C e. _V ) ) |
| 9 | xpexg | |- ( ( B e. W /\ A e. V ) -> ( B X. A ) e. _V ) |
|
| 10 | 9 | ancoms | |- ( ( A e. V /\ B e. W ) -> ( B X. A ) e. _V ) |
| 11 | ssexg | |- ( ( C C_ ( B X. A ) /\ ( B X. A ) e. _V ) -> C e. _V ) |
|
| 12 | 11 | expcom | |- ( ( B X. A ) e. _V -> ( C C_ ( B X. A ) -> C e. _V ) ) |
| 13 | 10 12 | syl | |- ( ( A e. V /\ B e. W ) -> ( C C_ ( B X. A ) -> C e. _V ) ) |
| 14 | elpwg | |- ( C e. _V -> ( C e. ~P ( B X. A ) <-> C C_ ( B X. A ) ) ) |
|
| 15 | 14 | a1i | |- ( ( A e. V /\ B e. W ) -> ( C e. _V -> ( C e. ~P ( B X. A ) <-> C C_ ( B X. A ) ) ) ) |
| 16 | 8 13 15 | pm5.21ndd | |- ( ( A e. V /\ B e. W ) -> ( C e. ~P ( B X. A ) <-> C C_ ( B X. A ) ) ) |
| 17 | 16 | anbi2d | |- ( ( A e. V /\ B e. W ) -> ( ( Fun C /\ C e. ~P ( B X. A ) ) <-> ( Fun C /\ C C_ ( B X. A ) ) ) ) |
| 18 | 6 17 | bitrd | |- ( ( A e. V /\ B e. W ) -> ( C e. ( A ^pm B ) <-> ( Fun C /\ C C_ ( B X. A ) ) ) ) |