This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition implying membership in a projective subspace sum. (Contributed by NM, 8-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddfval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| paddfval.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| paddfval.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| paddfval.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | elpaddri | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑆 ∈ ( 𝑋 + 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddfval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | paddfval.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | paddfval.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | paddfval.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 5 | simp3l | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑆 ∈ 𝐴 ) | |
| 6 | simp2l | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑄 ∈ 𝑋 ) | |
| 7 | simp2r | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑅 ∈ 𝑌 ) | |
| 8 | simp3r | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) | |
| 9 | oveq1 | ⊢ ( 𝑞 = 𝑄 → ( 𝑞 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) | |
| 10 | 9 | breq2d | ⊢ ( 𝑞 = 𝑄 → ( 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ↔ 𝑆 ≤ ( 𝑄 ∨ 𝑟 ) ) ) |
| 11 | oveq2 | ⊢ ( 𝑟 = 𝑅 → ( 𝑄 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑅 ) ) | |
| 12 | 11 | breq2d | ⊢ ( 𝑟 = 𝑅 → ( 𝑆 ≤ ( 𝑄 ∨ 𝑟 ) ↔ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |
| 13 | 10 12 | rspc2ev | ⊢ ( ( 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) → ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) |
| 14 | 6 7 8 13 | syl3anc | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) |
| 15 | ne0i | ⊢ ( 𝑄 ∈ 𝑋 → 𝑋 ≠ ∅ ) | |
| 16 | ne0i | ⊢ ( 𝑅 ∈ 𝑌 → 𝑌 ≠ ∅ ) | |
| 17 | 15 16 | anim12i | ⊢ ( ( 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) → ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) |
| 18 | 17 | anim2i | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ) → ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) ) |
| 19 | 18 | 3adant3 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) ) |
| 20 | 1 2 3 4 | elpaddn0 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑆 ∈ ( 𝑋 + 𝑌 ) ↔ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) |
| 21 | 19 20 | syl | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝑆 ∈ ( 𝑋 + 𝑌 ) ↔ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑆 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) |
| 22 | 5 14 21 | mpbir2and | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑆 ∈ ( 𝑋 + 𝑌 ) ) |