This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition implying membership in a projective subspace sum with a point. (Contributed by NM, 1-Feb-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddfval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| paddfval.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| paddfval.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| paddfval.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | elpaddatriN | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑅 ∨ 𝑄 ) ) ) → 𝑆 ∈ ( 𝑋 + { 𝑄 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddfval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | paddfval.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | paddfval.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | paddfval.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 5 | simpl1 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑅 ∨ 𝑄 ) ) ) → 𝐾 ∈ Lat ) | |
| 6 | simpl2 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑅 ∨ 𝑄 ) ) ) → 𝑋 ⊆ 𝐴 ) | |
| 7 | simpl3 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑅 ∨ 𝑄 ) ) ) → 𝑄 ∈ 𝐴 ) | |
| 8 | 7 | snssd | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑅 ∨ 𝑄 ) ) ) → { 𝑄 } ⊆ 𝐴 ) |
| 9 | simpr1 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑅 ∨ 𝑄 ) ) ) → 𝑅 ∈ 𝑋 ) | |
| 10 | snidg | ⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ { 𝑄 } ) | |
| 11 | 7 10 | syl | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑅 ∨ 𝑄 ) ) ) → 𝑄 ∈ { 𝑄 } ) |
| 12 | simpr2 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑅 ∨ 𝑄 ) ) ) → 𝑆 ∈ 𝐴 ) | |
| 13 | simpr3 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑅 ∨ 𝑄 ) ) ) → 𝑆 ≤ ( 𝑅 ∨ 𝑄 ) ) | |
| 14 | 1 2 3 4 | elpaddri | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ { 𝑄 } ⊆ 𝐴 ) ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑄 ∈ { 𝑄 } ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑅 ∨ 𝑄 ) ) ) → 𝑆 ∈ ( 𝑋 + { 𝑄 } ) ) |
| 15 | 5 6 8 9 11 12 13 14 | syl322anc | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑅 ∨ 𝑄 ) ) ) → 𝑆 ∈ ( 𝑋 + { 𝑄 } ) ) |