This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition implying membership in a projective subspace sum. (Contributed by NM, 8-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddfval.l | |- .<_ = ( le ` K ) |
|
| paddfval.j | |- .\/ = ( join ` K ) |
||
| paddfval.a | |- A = ( Atoms ` K ) |
||
| paddfval.p | |- .+ = ( +P ` K ) |
||
| Assertion | elpaddri | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( Q e. X /\ R e. Y ) /\ ( S e. A /\ S .<_ ( Q .\/ R ) ) ) -> S e. ( X .+ Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddfval.l | |- .<_ = ( le ` K ) |
|
| 2 | paddfval.j | |- .\/ = ( join ` K ) |
|
| 3 | paddfval.a | |- A = ( Atoms ` K ) |
|
| 4 | paddfval.p | |- .+ = ( +P ` K ) |
|
| 5 | simp3l | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( Q e. X /\ R e. Y ) /\ ( S e. A /\ S .<_ ( Q .\/ R ) ) ) -> S e. A ) |
|
| 6 | simp2l | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( Q e. X /\ R e. Y ) /\ ( S e. A /\ S .<_ ( Q .\/ R ) ) ) -> Q e. X ) |
|
| 7 | simp2r | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( Q e. X /\ R e. Y ) /\ ( S e. A /\ S .<_ ( Q .\/ R ) ) ) -> R e. Y ) |
|
| 8 | simp3r | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( Q e. X /\ R e. Y ) /\ ( S e. A /\ S .<_ ( Q .\/ R ) ) ) -> S .<_ ( Q .\/ R ) ) |
|
| 9 | oveq1 | |- ( q = Q -> ( q .\/ r ) = ( Q .\/ r ) ) |
|
| 10 | 9 | breq2d | |- ( q = Q -> ( S .<_ ( q .\/ r ) <-> S .<_ ( Q .\/ r ) ) ) |
| 11 | oveq2 | |- ( r = R -> ( Q .\/ r ) = ( Q .\/ R ) ) |
|
| 12 | 11 | breq2d | |- ( r = R -> ( S .<_ ( Q .\/ r ) <-> S .<_ ( Q .\/ R ) ) ) |
| 13 | 10 12 | rspc2ev | |- ( ( Q e. X /\ R e. Y /\ S .<_ ( Q .\/ R ) ) -> E. q e. X E. r e. Y S .<_ ( q .\/ r ) ) |
| 14 | 6 7 8 13 | syl3anc | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( Q e. X /\ R e. Y ) /\ ( S e. A /\ S .<_ ( Q .\/ R ) ) ) -> E. q e. X E. r e. Y S .<_ ( q .\/ r ) ) |
| 15 | ne0i | |- ( Q e. X -> X =/= (/) ) |
|
| 16 | ne0i | |- ( R e. Y -> Y =/= (/) ) |
|
| 17 | 15 16 | anim12i | |- ( ( Q e. X /\ R e. Y ) -> ( X =/= (/) /\ Y =/= (/) ) ) |
| 18 | 17 | anim2i | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( Q e. X /\ R e. Y ) ) -> ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) ) |
| 19 | 18 | 3adant3 | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( Q e. X /\ R e. Y ) /\ ( S e. A /\ S .<_ ( Q .\/ R ) ) ) -> ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) ) |
| 20 | 1 2 3 4 | elpaddn0 | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( S e. ( X .+ Y ) <-> ( S e. A /\ E. q e. X E. r e. Y S .<_ ( q .\/ r ) ) ) ) |
| 21 | 19 20 | syl | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( Q e. X /\ R e. Y ) /\ ( S e. A /\ S .<_ ( Q .\/ R ) ) ) -> ( S e. ( X .+ Y ) <-> ( S e. A /\ E. q e. X E. r e. Y S .<_ ( q .\/ r ) ) ) ) |
| 22 | 5 14 21 | mpbir2and | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( Q e. X /\ R e. Y ) /\ ( S e. A /\ S .<_ ( Q .\/ R ) ) ) -> S e. ( X .+ Y ) ) |