This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a projective subspace sum with a point. (Contributed by NM, 29-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddfval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| paddfval.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| paddfval.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| paddfval.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | elpaddat | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → ( 𝑆 ∈ ( 𝑋 + { 𝑄 } ) ↔ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑝 ∈ 𝑋 𝑆 ≤ ( 𝑝 ∨ 𝑄 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddfval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | paddfval.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | paddfval.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | paddfval.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 5 | simpl1 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → 𝐾 ∈ Lat ) | |
| 6 | simpl2 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → 𝑋 ⊆ 𝐴 ) | |
| 7 | simpl3 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → 𝑄 ∈ 𝐴 ) | |
| 8 | 7 | snssd | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → { 𝑄 } ⊆ 𝐴 ) |
| 9 | simpr | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → 𝑋 ≠ ∅ ) | |
| 10 | 7 | snn0d | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → { 𝑄 } ≠ ∅ ) |
| 11 | 1 2 3 4 | elpaddn0 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ { 𝑄 } ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ { 𝑄 } ≠ ∅ ) ) → ( 𝑆 ∈ ( 𝑋 + { 𝑄 } ) ↔ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑝 ∈ 𝑋 ∃ 𝑟 ∈ { 𝑄 } 𝑆 ≤ ( 𝑝 ∨ 𝑟 ) ) ) ) |
| 12 | 5 6 8 9 10 11 | syl32anc | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → ( 𝑆 ∈ ( 𝑋 + { 𝑄 } ) ↔ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑝 ∈ 𝑋 ∃ 𝑟 ∈ { 𝑄 } 𝑆 ≤ ( 𝑝 ∨ 𝑟 ) ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑟 = 𝑄 → ( 𝑝 ∨ 𝑟 ) = ( 𝑝 ∨ 𝑄 ) ) | |
| 14 | 13 | breq2d | ⊢ ( 𝑟 = 𝑄 → ( 𝑆 ≤ ( 𝑝 ∨ 𝑟 ) ↔ 𝑆 ≤ ( 𝑝 ∨ 𝑄 ) ) ) |
| 15 | 14 | rexsng | ⊢ ( 𝑄 ∈ 𝐴 → ( ∃ 𝑟 ∈ { 𝑄 } 𝑆 ≤ ( 𝑝 ∨ 𝑟 ) ↔ 𝑆 ≤ ( 𝑝 ∨ 𝑄 ) ) ) |
| 16 | 7 15 | syl | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → ( ∃ 𝑟 ∈ { 𝑄 } 𝑆 ≤ ( 𝑝 ∨ 𝑟 ) ↔ 𝑆 ≤ ( 𝑝 ∨ 𝑄 ) ) ) |
| 17 | 16 | rexbidv | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → ( ∃ 𝑝 ∈ 𝑋 ∃ 𝑟 ∈ { 𝑄 } 𝑆 ≤ ( 𝑝 ∨ 𝑟 ) ↔ ∃ 𝑝 ∈ 𝑋 𝑆 ≤ ( 𝑝 ∨ 𝑄 ) ) ) |
| 18 | 17 | anbi2d | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → ( ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑝 ∈ 𝑋 ∃ 𝑟 ∈ { 𝑄 } 𝑆 ≤ ( 𝑝 ∨ 𝑟 ) ) ↔ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑝 ∈ 𝑋 𝑆 ≤ ( 𝑝 ∨ 𝑄 ) ) ) ) |
| 19 | 12 18 | bitrd | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → ( 𝑆 ∈ ( 𝑋 + { 𝑄 } ) ↔ ( 𝑆 ∈ 𝐴 ∧ ∃ 𝑝 ∈ 𝑋 𝑆 ≤ ( 𝑝 ∨ 𝑄 ) ) ) ) |