This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition implying membership in a projective subspace sum with a point. (Contributed by NM, 1-Feb-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddfval.l | |- .<_ = ( le ` K ) |
|
| paddfval.j | |- .\/ = ( join ` K ) |
||
| paddfval.a | |- A = ( Atoms ` K ) |
||
| paddfval.p | |- .+ = ( +P ` K ) |
||
| Assertion | elpaddatriN | |- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ ( R e. X /\ S e. A /\ S .<_ ( R .\/ Q ) ) ) -> S e. ( X .+ { Q } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddfval.l | |- .<_ = ( le ` K ) |
|
| 2 | paddfval.j | |- .\/ = ( join ` K ) |
|
| 3 | paddfval.a | |- A = ( Atoms ` K ) |
|
| 4 | paddfval.p | |- .+ = ( +P ` K ) |
|
| 5 | simpl1 | |- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ ( R e. X /\ S e. A /\ S .<_ ( R .\/ Q ) ) ) -> K e. Lat ) |
|
| 6 | simpl2 | |- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ ( R e. X /\ S e. A /\ S .<_ ( R .\/ Q ) ) ) -> X C_ A ) |
|
| 7 | simpl3 | |- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ ( R e. X /\ S e. A /\ S .<_ ( R .\/ Q ) ) ) -> Q e. A ) |
|
| 8 | 7 | snssd | |- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ ( R e. X /\ S e. A /\ S .<_ ( R .\/ Q ) ) ) -> { Q } C_ A ) |
| 9 | simpr1 | |- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ ( R e. X /\ S e. A /\ S .<_ ( R .\/ Q ) ) ) -> R e. X ) |
|
| 10 | snidg | |- ( Q e. A -> Q e. { Q } ) |
|
| 11 | 7 10 | syl | |- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ ( R e. X /\ S e. A /\ S .<_ ( R .\/ Q ) ) ) -> Q e. { Q } ) |
| 12 | simpr2 | |- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ ( R e. X /\ S e. A /\ S .<_ ( R .\/ Q ) ) ) -> S e. A ) |
|
| 13 | simpr3 | |- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ ( R e. X /\ S e. A /\ S .<_ ( R .\/ Q ) ) ) -> S .<_ ( R .\/ Q ) ) |
|
| 14 | 1 2 3 4 | elpaddri | |- ( ( ( K e. Lat /\ X C_ A /\ { Q } C_ A ) /\ ( R e. X /\ Q e. { Q } ) /\ ( S e. A /\ S .<_ ( R .\/ Q ) ) ) -> S e. ( X .+ { Q } ) ) |
| 15 | 5 6 8 9 11 12 13 14 | syl322anc | |- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ ( R e. X /\ S e. A /\ S .<_ ( R .\/ Q ) ) ) -> S e. ( X .+ { Q } ) ) |