This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Consequence of membership in a projective subspace sum with a point. (Contributed by NM, 2-Feb-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddfval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| paddfval.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| paddfval.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| paddfval.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | elpaddatiN | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑅 ∈ ( 𝑋 + { 𝑄 } ) ) ) → ∃ 𝑝 ∈ 𝑋 𝑅 ≤ ( 𝑝 ∨ 𝑄 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddfval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | paddfval.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | paddfval.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | paddfval.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 5 | 1 2 3 4 | elpaddat | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → ( 𝑅 ∈ ( 𝑋 + { 𝑄 } ) ↔ ( 𝑅 ∈ 𝐴 ∧ ∃ 𝑝 ∈ 𝑋 𝑅 ≤ ( 𝑝 ∨ 𝑄 ) ) ) ) |
| 6 | simpr | ⊢ ( ( 𝑅 ∈ 𝐴 ∧ ∃ 𝑝 ∈ 𝑋 𝑅 ≤ ( 𝑝 ∨ 𝑄 ) ) → ∃ 𝑝 ∈ 𝑋 𝑅 ≤ ( 𝑝 ∨ 𝑄 ) ) | |
| 7 | 5 6 | biimtrdi | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → ( 𝑅 ∈ ( 𝑋 + { 𝑄 } ) → ∃ 𝑝 ∈ 𝑋 𝑅 ≤ ( 𝑝 ∨ 𝑄 ) ) ) |
| 8 | 7 | impr | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑅 ∈ ( 𝑋 + { 𝑄 } ) ) ) → ∃ 𝑝 ∈ 𝑋 𝑅 ≤ ( 𝑝 ∨ 𝑄 ) ) |