This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a projective subspace sum with a point. (Contributed by NM, 29-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddfval.l | |- .<_ = ( le ` K ) |
|
| paddfval.j | |- .\/ = ( join ` K ) |
||
| paddfval.a | |- A = ( Atoms ` K ) |
||
| paddfval.p | |- .+ = ( +P ` K ) |
||
| Assertion | elpaddat | |- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> ( S e. ( X .+ { Q } ) <-> ( S e. A /\ E. p e. X S .<_ ( p .\/ Q ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddfval.l | |- .<_ = ( le ` K ) |
|
| 2 | paddfval.j | |- .\/ = ( join ` K ) |
|
| 3 | paddfval.a | |- A = ( Atoms ` K ) |
|
| 4 | paddfval.p | |- .+ = ( +P ` K ) |
|
| 5 | simpl1 | |- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> K e. Lat ) |
|
| 6 | simpl2 | |- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> X C_ A ) |
|
| 7 | simpl3 | |- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> Q e. A ) |
|
| 8 | 7 | snssd | |- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> { Q } C_ A ) |
| 9 | simpr | |- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> X =/= (/) ) |
|
| 10 | 7 | snn0d | |- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> { Q } =/= (/) ) |
| 11 | 1 2 3 4 | elpaddn0 | |- ( ( ( K e. Lat /\ X C_ A /\ { Q } C_ A ) /\ ( X =/= (/) /\ { Q } =/= (/) ) ) -> ( S e. ( X .+ { Q } ) <-> ( S e. A /\ E. p e. X E. r e. { Q } S .<_ ( p .\/ r ) ) ) ) |
| 12 | 5 6 8 9 10 11 | syl32anc | |- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> ( S e. ( X .+ { Q } ) <-> ( S e. A /\ E. p e. X E. r e. { Q } S .<_ ( p .\/ r ) ) ) ) |
| 13 | oveq2 | |- ( r = Q -> ( p .\/ r ) = ( p .\/ Q ) ) |
|
| 14 | 13 | breq2d | |- ( r = Q -> ( S .<_ ( p .\/ r ) <-> S .<_ ( p .\/ Q ) ) ) |
| 15 | 14 | rexsng | |- ( Q e. A -> ( E. r e. { Q } S .<_ ( p .\/ r ) <-> S .<_ ( p .\/ Q ) ) ) |
| 16 | 7 15 | syl | |- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> ( E. r e. { Q } S .<_ ( p .\/ r ) <-> S .<_ ( p .\/ Q ) ) ) |
| 17 | 16 | rexbidv | |- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> ( E. p e. X E. r e. { Q } S .<_ ( p .\/ r ) <-> E. p e. X S .<_ ( p .\/ Q ) ) ) |
| 18 | 17 | anbi2d | |- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> ( ( S e. A /\ E. p e. X E. r e. { Q } S .<_ ( p .\/ r ) ) <-> ( S e. A /\ E. p e. X S .<_ ( p .\/ Q ) ) ) ) |
| 19 | 12 18 | bitrd | |- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> ( S e. ( X .+ { Q } ) <-> ( S e. A /\ E. p e. X S .<_ ( p .\/ Q ) ) ) ) |