This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for elementhood in the set M . (Contributed by Mario Carneiro, 16-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elovolm.1 | ⊢ 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } | |
| elovolmr.2 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | ||
| Assertion | elovolmr | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) → sup ( ran 𝑆 , ℝ* , < ) ∈ 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elovolm.1 | ⊢ 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } | |
| 2 | elovolmr.2 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | |
| 3 | elovolmlem | ⊢ ( 𝐹 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 4 | id | ⊢ ( 𝑓 = 𝐹 → 𝑓 = 𝐹 ) | |
| 5 | 4 | eqcomd | ⊢ ( 𝑓 = 𝐹 → 𝐹 = 𝑓 ) |
| 6 | 5 | coeq2d | ⊢ ( 𝑓 = 𝐹 → ( ( abs ∘ − ) ∘ 𝐹 ) = ( ( abs ∘ − ) ∘ 𝑓 ) ) |
| 7 | 6 | seqeq3d | ⊢ ( 𝑓 = 𝐹 → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ) |
| 8 | 2 7 | eqtrid | ⊢ ( 𝑓 = 𝐹 → 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ) |
| 9 | 8 | rneqd | ⊢ ( 𝑓 = 𝐹 → ran 𝑆 = ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ) |
| 10 | 9 | supeq1d | ⊢ ( 𝑓 = 𝐹 → sup ( ran 𝑆 , ℝ* , < ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
| 11 | 10 | biantrud | ⊢ ( 𝑓 = 𝐹 → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ↔ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran 𝑆 , ℝ* , < ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) ) |
| 12 | coeq2 | ⊢ ( 𝑓 = 𝐹 → ( (,) ∘ 𝑓 ) = ( (,) ∘ 𝐹 ) ) | |
| 13 | 12 | rneqd | ⊢ ( 𝑓 = 𝐹 → ran ( (,) ∘ 𝑓 ) = ran ( (,) ∘ 𝐹 ) ) |
| 14 | 13 | unieqd | ⊢ ( 𝑓 = 𝐹 → ∪ ran ( (,) ∘ 𝑓 ) = ∪ ran ( (,) ∘ 𝐹 ) ) |
| 15 | 14 | sseq2d | ⊢ ( 𝑓 = 𝐹 → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ↔ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) ) |
| 16 | 11 15 | bitr3d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran 𝑆 , ℝ* , < ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ↔ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) ) |
| 17 | 16 | rspcev | ⊢ ( ( 𝐹 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran 𝑆 , ℝ* , < ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) |
| 18 | 3 17 | sylanbr | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran 𝑆 , ℝ* , < ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) |
| 19 | 1 | elovolm | ⊢ ( sup ( ran 𝑆 , ℝ* , < ) ∈ 𝑀 ↔ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran 𝑆 , ℝ* , < ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) |
| 20 | 18 19 | sylibr | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) → sup ( ran 𝑆 , ℝ* , < ) ∈ 𝑀 ) |