This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the set M of approximations to the outer measure. (Contributed by Mario Carneiro, 16-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elovolm.1 | |- M = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } |
|
| Assertion | elovolm | |- ( B e. M <-> E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ B = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elovolm.1 | |- M = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) } |
|
| 2 | eqeq1 | |- ( y = B -> ( y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <-> B = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) |
|
| 3 | 2 | anbi2d | |- ( y = B -> ( ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) <-> ( A C_ U. ran ( (,) o. f ) /\ B = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) ) |
| 4 | 3 | rexbidv | |- ( y = B -> ( E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) <-> E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ B = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) ) |
| 5 | 4 1 | elrab2 | |- ( B e. M <-> ( B e. RR* /\ E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ B = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) ) |
| 6 | elovolmlem | |- ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> f : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 7 | eqid | |- ( ( abs o. - ) o. f ) = ( ( abs o. - ) o. f ) |
|
| 8 | eqid | |- seq 1 ( + , ( ( abs o. - ) o. f ) ) = seq 1 ( + , ( ( abs o. - ) o. f ) ) |
|
| 9 | 7 8 | ovolsf | |- ( f : NN --> ( <_ i^i ( RR X. RR ) ) -> seq 1 ( + , ( ( abs o. - ) o. f ) ) : NN --> ( 0 [,) +oo ) ) |
| 10 | 6 9 | sylbi | |- ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) -> seq 1 ( + , ( ( abs o. - ) o. f ) ) : NN --> ( 0 [,) +oo ) ) |
| 11 | icossxr | |- ( 0 [,) +oo ) C_ RR* |
|
| 12 | fss | |- ( ( seq 1 ( + , ( ( abs o. - ) o. f ) ) : NN --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR* ) -> seq 1 ( + , ( ( abs o. - ) o. f ) ) : NN --> RR* ) |
|
| 13 | 10 11 12 | sylancl | |- ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) -> seq 1 ( + , ( ( abs o. - ) o. f ) ) : NN --> RR* ) |
| 14 | frn | |- ( seq 1 ( + , ( ( abs o. - ) o. f ) ) : NN --> RR* -> ran seq 1 ( + , ( ( abs o. - ) o. f ) ) C_ RR* ) |
|
| 15 | supxrcl | |- ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) C_ RR* -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) e. RR* ) |
|
| 16 | 13 14 15 | 3syl | |- ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) e. RR* ) |
| 17 | eleq1 | |- ( B = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) -> ( B e. RR* <-> sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) e. RR* ) ) |
|
| 18 | 16 17 | syl5ibrcom | |- ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) -> ( B = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) -> B e. RR* ) ) |
| 19 | 18 | imp | |- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ B = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) -> B e. RR* ) |
| 20 | 19 | adantrl | |- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( A C_ U. ran ( (,) o. f ) /\ B = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) -> B e. RR* ) |
| 21 | 20 | rexlimiva | |- ( E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ B = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) -> B e. RR* ) |
| 22 | 21 | pm4.71ri | |- ( E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ B = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) <-> ( B e. RR* /\ E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ B = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) ) |
| 23 | 5 22 | bitr4i | |- ( B e. M <-> E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ B = sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) ) ) |