This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Both components of a pre-image of a non-empty opposite functor exist; and the second component is a relation on triples. (Contributed by Zhi Wang, 18-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eloppf2.k | ⊢ ( 𝐹 oppFunc 𝐺 ) = 𝐾 | |
| eloppf2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) | ||
| Assertion | eloppf2 | ⊢ ( 𝜑 → ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Rel 𝐺 ∧ Rel dom 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloppf2.k | ⊢ ( 𝐹 oppFunc 𝐺 ) = 𝐾 | |
| 2 | eloppf2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) | |
| 3 | 2 1 | eleqtrrdi | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐹 oppFunc 𝐺 ) ) |
| 4 | df-oppf | ⊢ oppFunc = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ if ( ( Rel 𝑔 ∧ Rel dom 𝑔 ) , 〈 𝑓 , tpos 𝑔 〉 , ∅ ) ) | |
| 5 | 4 | elmpocl | ⊢ ( 𝑋 ∈ ( 𝐹 oppFunc 𝐺 ) → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) |
| 6 | 3 5 | syl | ⊢ ( 𝜑 → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) |
| 7 | oppfvalg | ⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 𝐹 oppFunc 𝐺 ) = if ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) , 〈 𝐹 , tpos 𝐺 〉 , ∅ ) ) | |
| 8 | 6 7 | syl | ⊢ ( 𝜑 → ( 𝐹 oppFunc 𝐺 ) = if ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) , 〈 𝐹 , tpos 𝐺 〉 , ∅ ) ) |
| 9 | 3 8 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ if ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) , 〈 𝐹 , tpos 𝐺 〉 , ∅ ) ) |
| 10 | 9 | ne0d | ⊢ ( 𝜑 → if ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) , 〈 𝐹 , tpos 𝐺 〉 , ∅ ) ≠ ∅ ) |
| 11 | iffalse | ⊢ ( ¬ ( Rel 𝐺 ∧ Rel dom 𝐺 ) → if ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) , 〈 𝐹 , tpos 𝐺 〉 , ∅ ) = ∅ ) | |
| 12 | 11 | necon1ai | ⊢ ( if ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) , 〈 𝐹 , tpos 𝐺 〉 , ∅ ) ≠ ∅ → ( Rel 𝐺 ∧ Rel dom 𝐺 ) ) |
| 13 | 10 12 | syl | ⊢ ( 𝜑 → ( Rel 𝐺 ∧ Rel dom 𝐺 ) ) |
| 14 | 6 13 | jca | ⊢ ( 𝜑 → ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Rel 𝐺 ∧ Rel dom 𝐺 ) ) ) |