This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for oppfval . (Contributed by Zhi Wang, 13-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oppfvallem | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( Rel 𝐺 ∧ Rel dom 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 2 | id | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | |
| 3 | 1 2 | funcfn2 | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → 𝐺 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 4 | fnrel | ⊢ ( 𝐺 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) → Rel 𝐺 ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → Rel 𝐺 ) |
| 6 | relxp | ⊢ Rel ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) | |
| 7 | 3 | fndmd | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → dom 𝐺 = ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 8 | 7 | releqd | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( Rel dom 𝐺 ↔ Rel ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) |
| 9 | 6 8 | mpbiri | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → Rel dom 𝐺 ) |
| 10 | 5 9 | jca | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( Rel 𝐺 ∧ Rel dom 𝐺 ) ) |