This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Both components of a pre-image of a non-empty opposite functor exist; and the second component is a relation on triples. (Contributed by Zhi Wang, 18-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eloppf2.k | |- ( F oppFunc G ) = K |
|
| eloppf2.x | |- ( ph -> X e. K ) |
||
| Assertion | eloppf2 | |- ( ph -> ( ( F e. _V /\ G e. _V ) /\ ( Rel G /\ Rel dom G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloppf2.k | |- ( F oppFunc G ) = K |
|
| 2 | eloppf2.x | |- ( ph -> X e. K ) |
|
| 3 | 2 1 | eleqtrrdi | |- ( ph -> X e. ( F oppFunc G ) ) |
| 4 | df-oppf | |- oppFunc = ( f e. _V , g e. _V |-> if ( ( Rel g /\ Rel dom g ) , <. f , tpos g >. , (/) ) ) |
|
| 5 | 4 | elmpocl | |- ( X e. ( F oppFunc G ) -> ( F e. _V /\ G e. _V ) ) |
| 6 | 3 5 | syl | |- ( ph -> ( F e. _V /\ G e. _V ) ) |
| 7 | oppfvalg | |- ( ( F e. _V /\ G e. _V ) -> ( F oppFunc G ) = if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) ) |
|
| 8 | 6 7 | syl | |- ( ph -> ( F oppFunc G ) = if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) ) |
| 9 | 3 8 | eleqtrd | |- ( ph -> X e. if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) ) |
| 10 | 9 | ne0d | |- ( ph -> if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) =/= (/) ) |
| 11 | iffalse | |- ( -. ( Rel G /\ Rel dom G ) -> if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) = (/) ) |
|
| 12 | 11 | necon1ai | |- ( if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) =/= (/) -> ( Rel G /\ Rel dom G ) ) |
| 13 | 10 12 | syl | |- ( ph -> ( Rel G /\ Rel dom G ) ) |
| 14 | 6 13 | jca | |- ( ph -> ( ( F e. _V /\ G e. _V ) /\ ( Rel G /\ Rel dom G ) ) ) |