This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the opposite functor. (Contributed by Zhi Wang, 13-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oppfvalg | ⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 𝐹 oppFunc 𝐺 ) = if ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) , 〈 𝐹 , tpos 𝐺 〉 , ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → 𝑔 = 𝐺 ) | |
| 2 | 1 | releqd | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( Rel 𝑔 ↔ Rel 𝐺 ) ) |
| 3 | 1 | dmeqd | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → dom 𝑔 = dom 𝐺 ) |
| 4 | 3 | releqd | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( Rel dom 𝑔 ↔ Rel dom 𝐺 ) ) |
| 5 | 2 4 | anbi12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( Rel 𝑔 ∧ Rel dom 𝑔 ) ↔ ( Rel 𝐺 ∧ Rel dom 𝐺 ) ) ) |
| 6 | simpl | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → 𝑓 = 𝐹 ) | |
| 7 | 1 | tposeqd | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → tpos 𝑔 = tpos 𝐺 ) |
| 8 | 6 7 | opeq12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → 〈 𝑓 , tpos 𝑔 〉 = 〈 𝐹 , tpos 𝐺 〉 ) |
| 9 | 5 8 | ifbieq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → if ( ( Rel 𝑔 ∧ Rel dom 𝑔 ) , 〈 𝑓 , tpos 𝑔 〉 , ∅ ) = if ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) , 〈 𝐹 , tpos 𝐺 〉 , ∅ ) ) |
| 10 | df-oppf | ⊢ oppFunc = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ if ( ( Rel 𝑔 ∧ Rel dom 𝑔 ) , 〈 𝑓 , tpos 𝑔 〉 , ∅ ) ) | |
| 11 | opex | ⊢ 〈 𝐹 , tpos 𝐺 〉 ∈ V | |
| 12 | 0ex | ⊢ ∅ ∈ V | |
| 13 | 11 12 | ifex | ⊢ if ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) , 〈 𝐹 , tpos 𝐺 〉 , ∅ ) ∈ V |
| 14 | 9 10 13 | ovmpoa | ⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 𝐹 oppFunc 𝐺 ) = if ( ( Rel 𝐺 ∧ Rel dom 𝐺 ) , 〈 𝐹 , tpos 𝐺 〉 , ∅ ) ) |