This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of eventually upper bounded real functions. This fills a gap in O(1) coverage, to express statements like f ( x ) <_ g ( x ) + O ( x ) via ( x e. RR+ |-> ( f ( x ) - g ( x ) ) / x ) e. <_O(1) . (Contributed by Mario Carneiro, 25-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lo1 | ⊢ ≤𝑂(1) = { 𝑓 ∈ ( ℝ ↑pm ℝ ) ∣ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ 𝑚 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clo1 | ⊢ ≤𝑂(1) | |
| 1 | vf | ⊢ 𝑓 | |
| 2 | cr | ⊢ ℝ | |
| 3 | cpm | ⊢ ↑pm | |
| 4 | 2 2 3 | co | ⊢ ( ℝ ↑pm ℝ ) |
| 5 | vx | ⊢ 𝑥 | |
| 6 | vm | ⊢ 𝑚 | |
| 7 | vy | ⊢ 𝑦 | |
| 8 | 1 | cv | ⊢ 𝑓 |
| 9 | 8 | cdm | ⊢ dom 𝑓 |
| 10 | 5 | cv | ⊢ 𝑥 |
| 11 | cico | ⊢ [,) | |
| 12 | cpnf | ⊢ +∞ | |
| 13 | 10 12 11 | co | ⊢ ( 𝑥 [,) +∞ ) |
| 14 | 9 13 | cin | ⊢ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) |
| 15 | 7 | cv | ⊢ 𝑦 |
| 16 | 15 8 | cfv | ⊢ ( 𝑓 ‘ 𝑦 ) |
| 17 | cle | ⊢ ≤ | |
| 18 | 6 | cv | ⊢ 𝑚 |
| 19 | 16 18 17 | wbr | ⊢ ( 𝑓 ‘ 𝑦 ) ≤ 𝑚 |
| 20 | 19 7 14 | wral | ⊢ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ 𝑚 |
| 21 | 20 6 2 | wrex | ⊢ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ 𝑚 |
| 22 | 21 5 2 | wrex | ⊢ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ 𝑚 |
| 23 | 22 1 4 | crab | ⊢ { 𝑓 ∈ ( ℝ ↑pm ℝ ) ∣ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ 𝑚 } |
| 24 | 0 23 | wceq | ⊢ ≤𝑂(1) = { 𝑓 ∈ ( ℝ ↑pm ℝ ) ∣ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( 𝑓 ‘ 𝑦 ) ≤ 𝑚 } |