This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ello1 | |- ( F e. <_O(1) <-> ( F e. ( RR ^pm RR ) /\ E. x e. RR E. m e. RR A. y e. ( dom F i^i ( x [,) +oo ) ) ( F ` y ) <_ m ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeq | |- ( f = F -> dom f = dom F ) |
|
| 2 | 1 | ineq1d | |- ( f = F -> ( dom f i^i ( x [,) +oo ) ) = ( dom F i^i ( x [,) +oo ) ) ) |
| 3 | fveq1 | |- ( f = F -> ( f ` y ) = ( F ` y ) ) |
|
| 4 | 3 | breq1d | |- ( f = F -> ( ( f ` y ) <_ m <-> ( F ` y ) <_ m ) ) |
| 5 | 2 4 | raleqbidv | |- ( f = F -> ( A. y e. ( dom f i^i ( x [,) +oo ) ) ( f ` y ) <_ m <-> A. y e. ( dom F i^i ( x [,) +oo ) ) ( F ` y ) <_ m ) ) |
| 6 | 5 | 2rexbidv | |- ( f = F -> ( E. x e. RR E. m e. RR A. y e. ( dom f i^i ( x [,) +oo ) ) ( f ` y ) <_ m <-> E. x e. RR E. m e. RR A. y e. ( dom F i^i ( x [,) +oo ) ) ( F ` y ) <_ m ) ) |
| 7 | df-lo1 | |- <_O(1) = { f e. ( RR ^pm RR ) | E. x e. RR E. m e. RR A. y e. ( dom f i^i ( x [,) +oo ) ) ( f ` y ) <_ m } |
|
| 8 | 6 7 | elrab2 | |- ( F e. <_O(1) <-> ( F e. ( RR ^pm RR ) /\ E. x e. RR E. m e. RR A. y e. ( dom F i^i ( x [,) +oo ) ) ( F ` y ) <_ m ) ) |