This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the interval function. (Contributed by Mario Carneiro, 3-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ixx.1 | ⊢ 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ) | |
| Assertion | ixxval | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 𝑂 𝐵 ) = { 𝑧 ∈ ℝ* ∣ ( 𝐴 𝑅 𝑧 ∧ 𝑧 𝑆 𝐵 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixx.1 | ⊢ 𝑂 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ) | |
| 2 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝑅 𝑧 ↔ 𝐴 𝑅 𝑧 ) ) | |
| 3 | 2 | anbi1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) ↔ ( 𝐴 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) ) ) |
| 4 | 3 | rabbidv | ⊢ ( 𝑥 = 𝐴 → { 𝑧 ∈ ℝ* ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } = { 𝑧 ∈ ℝ* ∣ ( 𝐴 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } ) |
| 5 | breq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝑧 𝑆 𝑦 ↔ 𝑧 𝑆 𝐵 ) ) | |
| 6 | 5 | anbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) ↔ ( 𝐴 𝑅 𝑧 ∧ 𝑧 𝑆 𝐵 ) ) ) |
| 7 | 6 | rabbidv | ⊢ ( 𝑦 = 𝐵 → { 𝑧 ∈ ℝ* ∣ ( 𝐴 𝑅 𝑧 ∧ 𝑧 𝑆 𝑦 ) } = { 𝑧 ∈ ℝ* ∣ ( 𝐴 𝑅 𝑧 ∧ 𝑧 𝑆 𝐵 ) } ) |
| 8 | xrex | ⊢ ℝ* ∈ V | |
| 9 | 8 | rabex | ⊢ { 𝑧 ∈ ℝ* ∣ ( 𝐴 𝑅 𝑧 ∧ 𝑧 𝑆 𝐵 ) } ∈ V |
| 10 | 4 7 1 9 | ovmpo | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 𝑂 𝐵 ) = { 𝑧 ∈ ℝ* ∣ ( 𝐴 𝑅 𝑧 ∧ 𝑧 𝑆 𝐵 ) } ) |