This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elintab.ex | |- A e. _V |
|
| Assertion | elintrab | |- ( A e. |^| { x e. B | ph } <-> A. x e. B ( ph -> A e. x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elintab.ex | |- A e. _V |
|
| 2 | 1 | elintab | |- ( A e. |^| { x | ( x e. B /\ ph ) } <-> A. x ( ( x e. B /\ ph ) -> A e. x ) ) |
| 3 | impexp | |- ( ( ( x e. B /\ ph ) -> A e. x ) <-> ( x e. B -> ( ph -> A e. x ) ) ) |
|
| 4 | 3 | albii | |- ( A. x ( ( x e. B /\ ph ) -> A e. x ) <-> A. x ( x e. B -> ( ph -> A e. x ) ) ) |
| 5 | 2 4 | bitri | |- ( A e. |^| { x | ( x e. B /\ ph ) } <-> A. x ( x e. B -> ( ph -> A e. x ) ) ) |
| 6 | df-rab | |- { x e. B | ph } = { x | ( x e. B /\ ph ) } |
|
| 7 | 6 | inteqi | |- |^| { x e. B | ph } = |^| { x | ( x e. B /\ ph ) } |
| 8 | 7 | eleq2i | |- ( A e. |^| { x e. B | ph } <-> A e. |^| { x | ( x e. B /\ ph ) } ) |
| 9 | df-ral | |- ( A. x e. B ( ph -> A e. x ) <-> A. x ( x e. B -> ( ph -> A e. x ) ) ) |
|
| 10 | 5 8 9 | 3bitr4i | |- ( A e. |^| { x e. B | ph } <-> A. x e. B ( ph -> A e. x ) ) |