This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of an increased integer in a correspondingly extended half-open range of integers. (Contributed by AV, 30-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elincfzoext | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝐼 ∈ ℕ0 ) → ( 𝑍 + 𝐼 ) ∈ ( 𝑀 ..^ ( 𝑁 + 𝐼 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzole1 | ⊢ ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀 ≤ 𝑍 ) | |
| 2 | elfzoelz | ⊢ ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑍 ∈ ℤ ) | |
| 3 | 2 | zred | ⊢ ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑍 ∈ ℝ ) |
| 4 | 3 | adantr | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑀 ≤ 𝑍 ) → 𝑍 ∈ ℝ ) |
| 5 | nn0addge1 | ⊢ ( ( 𝑍 ∈ ℝ ∧ 𝐼 ∈ ℕ0 ) → 𝑍 ≤ ( 𝑍 + 𝐼 ) ) | |
| 6 | 4 5 | sylan | ⊢ ( ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑀 ≤ 𝑍 ) ∧ 𝐼 ∈ ℕ0 ) → 𝑍 ≤ ( 𝑍 + 𝐼 ) ) |
| 7 | elfzoel1 | ⊢ ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀 ∈ ℤ ) | |
| 8 | 7 | zred | ⊢ ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀 ∈ ℝ ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝐼 ∈ ℕ0 ) → 𝑀 ∈ ℝ ) |
| 10 | 3 | adantr | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝐼 ∈ ℕ0 ) → 𝑍 ∈ ℝ ) |
| 11 | nn0re | ⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℝ ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝐼 ∈ ℕ0 ) → 𝐼 ∈ ℝ ) |
| 13 | 10 12 | readdcld | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝐼 ∈ ℕ0 ) → ( 𝑍 + 𝐼 ) ∈ ℝ ) |
| 14 | letr | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑍 ∈ ℝ ∧ ( 𝑍 + 𝐼 ) ∈ ℝ ) → ( ( 𝑀 ≤ 𝑍 ∧ 𝑍 ≤ ( 𝑍 + 𝐼 ) ) → 𝑀 ≤ ( 𝑍 + 𝐼 ) ) ) | |
| 15 | 9 10 13 14 | syl3anc | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝐼 ∈ ℕ0 ) → ( ( 𝑀 ≤ 𝑍 ∧ 𝑍 ≤ ( 𝑍 + 𝐼 ) ) → 𝑀 ≤ ( 𝑍 + 𝐼 ) ) ) |
| 16 | 15 | exp4b | ⊢ ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝐼 ∈ ℕ0 → ( 𝑀 ≤ 𝑍 → ( 𝑍 ≤ ( 𝑍 + 𝐼 ) → 𝑀 ≤ ( 𝑍 + 𝐼 ) ) ) ) ) |
| 17 | 16 | com23 | ⊢ ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑀 ≤ 𝑍 → ( 𝐼 ∈ ℕ0 → ( 𝑍 ≤ ( 𝑍 + 𝐼 ) → 𝑀 ≤ ( 𝑍 + 𝐼 ) ) ) ) ) |
| 18 | 17 | imp31 | ⊢ ( ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑀 ≤ 𝑍 ) ∧ 𝐼 ∈ ℕ0 ) → ( 𝑍 ≤ ( 𝑍 + 𝐼 ) → 𝑀 ≤ ( 𝑍 + 𝐼 ) ) ) |
| 19 | 6 18 | mpd | ⊢ ( ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑀 ≤ 𝑍 ) ∧ 𝐼 ∈ ℕ0 ) → 𝑀 ≤ ( 𝑍 + 𝐼 ) ) |
| 20 | 19 | exp31 | ⊢ ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑀 ≤ 𝑍 → ( 𝐼 ∈ ℕ0 → 𝑀 ≤ ( 𝑍 + 𝐼 ) ) ) ) |
| 21 | 1 20 | mpd | ⊢ ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝐼 ∈ ℕ0 → 𝑀 ≤ ( 𝑍 + 𝐼 ) ) ) |
| 22 | 21 | imp | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝐼 ∈ ℕ0 ) → 𝑀 ≤ ( 𝑍 + 𝐼 ) ) |
| 23 | elfzoel2 | ⊢ ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 24 | 23 | zred | ⊢ ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑁 ∈ ℝ ) |
| 25 | 24 | adantr | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝐼 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
| 26 | elfzolt2 | ⊢ ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑍 < 𝑁 ) | |
| 27 | 26 | adantr | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝐼 ∈ ℕ0 ) → 𝑍 < 𝑁 ) |
| 28 | 10 25 12 27 | ltadd1dd | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝐼 ∈ ℕ0 ) → ( 𝑍 + 𝐼 ) < ( 𝑁 + 𝐼 ) ) |
| 29 | 2 | adantr | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝐼 ∈ ℕ0 ) → 𝑍 ∈ ℤ ) |
| 30 | nn0z | ⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℤ ) | |
| 31 | 30 | adantl | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝐼 ∈ ℕ0 ) → 𝐼 ∈ ℤ ) |
| 32 | 29 31 | zaddcld | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝐼 ∈ ℕ0 ) → ( 𝑍 + 𝐼 ) ∈ ℤ ) |
| 33 | 7 | adantr | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝐼 ∈ ℕ0 ) → 𝑀 ∈ ℤ ) |
| 34 | 23 | adantr | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝐼 ∈ ℕ0 ) → 𝑁 ∈ ℤ ) |
| 35 | 34 31 | zaddcld | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝐼 ∈ ℕ0 ) → ( 𝑁 + 𝐼 ) ∈ ℤ ) |
| 36 | elfzo | ⊢ ( ( ( 𝑍 + 𝐼 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ( 𝑁 + 𝐼 ) ∈ ℤ ) → ( ( 𝑍 + 𝐼 ) ∈ ( 𝑀 ..^ ( 𝑁 + 𝐼 ) ) ↔ ( 𝑀 ≤ ( 𝑍 + 𝐼 ) ∧ ( 𝑍 + 𝐼 ) < ( 𝑁 + 𝐼 ) ) ) ) | |
| 37 | 32 33 35 36 | syl3anc | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝐼 ∈ ℕ0 ) → ( ( 𝑍 + 𝐼 ) ∈ ( 𝑀 ..^ ( 𝑁 + 𝐼 ) ) ↔ ( 𝑀 ≤ ( 𝑍 + 𝐼 ) ∧ ( 𝑍 + 𝐼 ) < ( 𝑁 + 𝐼 ) ) ) ) |
| 38 | 22 28 37 | mpbir2and | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝐼 ∈ ℕ0 ) → ( 𝑍 + 𝐼 ) ∈ ( 𝑀 ..^ ( 𝑁 + 𝐼 ) ) ) |