This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Translate membership in a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzosubel | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 − 𝐷 ) ∈ ( ( 𝐵 − 𝐷 ) ..^ ( 𝐶 − 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znegcl | ⊢ ( 𝐷 ∈ ℤ → - 𝐷 ∈ ℤ ) | |
| 2 | fzoaddel | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ - 𝐷 ∈ ℤ ) → ( 𝐴 + - 𝐷 ) ∈ ( ( 𝐵 + - 𝐷 ) ..^ ( 𝐶 + - 𝐷 ) ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 + - 𝐷 ) ∈ ( ( 𝐵 + - 𝐷 ) ..^ ( 𝐶 + - 𝐷 ) ) ) |
| 4 | elfzoelz | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐴 ∈ ℤ ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐴 ∈ ℤ ) |
| 6 | 5 | zcnd | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐴 ∈ ℂ ) |
| 7 | simpr | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐷 ∈ ℤ ) | |
| 8 | 7 | zcnd | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐷 ∈ ℂ ) |
| 9 | 6 8 | negsubd | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 + - 𝐷 ) = ( 𝐴 − 𝐷 ) ) |
| 10 | elfzoel1 | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐵 ∈ ℤ ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐵 ∈ ℤ ) |
| 12 | 11 | zcnd | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐵 ∈ ℂ ) |
| 13 | 12 8 | negsubd | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐵 + - 𝐷 ) = ( 𝐵 − 𝐷 ) ) |
| 14 | elfzoel2 | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐶 ∈ ℤ ) | |
| 15 | 14 | adantr | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐶 ∈ ℤ ) |
| 16 | 15 | zcnd | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐶 ∈ ℂ ) |
| 17 | 16 8 | negsubd | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐶 + - 𝐷 ) = ( 𝐶 − 𝐷 ) ) |
| 18 | 13 17 | oveq12d | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( ( 𝐵 + - 𝐷 ) ..^ ( 𝐶 + - 𝐷 ) ) = ( ( 𝐵 − 𝐷 ) ..^ ( 𝐶 − 𝐷 ) ) ) |
| 19 | 3 9 18 | 3eltr3d | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 − 𝐷 ) ∈ ( ( 𝐵 − 𝐷 ) ..^ ( 𝐶 − 𝐷 ) ) ) |