This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the image of an operation. (Contributed by SN, 27-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngop.1 | |- F = ( x e. A , y e. B |-> C ) |
|
| elimampo.d | |- ( ph -> D e. V ) |
||
| elimampo.x | |- ( ph -> X C_ A ) |
||
| elimampo.y | |- ( ph -> Y C_ B ) |
||
| Assertion | elimampo | |- ( ph -> ( D e. ( F " ( X X. Y ) ) <-> E. x e. X E. y e. Y D = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngop.1 | |- F = ( x e. A , y e. B |-> C ) |
|
| 2 | elimampo.d | |- ( ph -> D e. V ) |
|
| 3 | elimampo.x | |- ( ph -> X C_ A ) |
|
| 4 | elimampo.y | |- ( ph -> Y C_ B ) |
|
| 5 | df-ima | |- ( F " ( X X. Y ) ) = ran ( F |` ( X X. Y ) ) |
|
| 6 | 5 | eleq2i | |- ( D e. ( F " ( X X. Y ) ) <-> D e. ran ( F |` ( X X. Y ) ) ) |
| 7 | 1 | reseq1i | |- ( F |` ( X X. Y ) ) = ( ( x e. A , y e. B |-> C ) |` ( X X. Y ) ) |
| 8 | resmpo | |- ( ( X C_ A /\ Y C_ B ) -> ( ( x e. A , y e. B |-> C ) |` ( X X. Y ) ) = ( x e. X , y e. Y |-> C ) ) |
|
| 9 | 3 4 8 | syl2anc | |- ( ph -> ( ( x e. A , y e. B |-> C ) |` ( X X. Y ) ) = ( x e. X , y e. Y |-> C ) ) |
| 10 | 7 9 | eqtrid | |- ( ph -> ( F |` ( X X. Y ) ) = ( x e. X , y e. Y |-> C ) ) |
| 11 | 10 | rneqd | |- ( ph -> ran ( F |` ( X X. Y ) ) = ran ( x e. X , y e. Y |-> C ) ) |
| 12 | 11 | eleq2d | |- ( ph -> ( D e. ran ( F |` ( X X. Y ) ) <-> D e. ran ( x e. X , y e. Y |-> C ) ) ) |
| 13 | 6 12 | bitrid | |- ( ph -> ( D e. ( F " ( X X. Y ) ) <-> D e. ran ( x e. X , y e. Y |-> C ) ) ) |
| 14 | eqid | |- ( x e. X , y e. Y |-> C ) = ( x e. X , y e. Y |-> C ) |
|
| 15 | 14 | elrnmpog | |- ( D e. V -> ( D e. ran ( x e. X , y e. Y |-> C ) <-> E. x e. X E. y e. Y D = C ) ) |
| 16 | 2 15 | syl | |- ( ph -> ( D e. ran ( x e. X , y e. Y |-> C ) <-> E. x e. X E. y e. Y D = C ) ) |
| 17 | 13 16 | bitrd | |- ( ph -> ( D e. ( F " ( X X. Y ) ) <-> E. x e. X E. y e. Y D = C ) ) |