This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Divide the unit interval into two pieces. (Contributed by Mario Carneiro, 7-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elii2 | |- ( ( X e. ( 0 [,] 1 ) /\ -. X <_ ( 1 / 2 ) ) -> X e. ( ( 1 / 2 ) [,] 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc01 | |- ( X e. ( 0 [,] 1 ) <-> ( X e. RR /\ 0 <_ X /\ X <_ 1 ) ) |
|
| 2 | 1 | simp1bi | |- ( X e. ( 0 [,] 1 ) -> X e. RR ) |
| 3 | 2 | adantr | |- ( ( X e. ( 0 [,] 1 ) /\ -. X <_ ( 1 / 2 ) ) -> X e. RR ) |
| 4 | halfre | |- ( 1 / 2 ) e. RR |
|
| 5 | letric | |- ( ( X e. RR /\ ( 1 / 2 ) e. RR ) -> ( X <_ ( 1 / 2 ) \/ ( 1 / 2 ) <_ X ) ) |
|
| 6 | 2 4 5 | sylancl | |- ( X e. ( 0 [,] 1 ) -> ( X <_ ( 1 / 2 ) \/ ( 1 / 2 ) <_ X ) ) |
| 7 | 6 | orcanai | |- ( ( X e. ( 0 [,] 1 ) /\ -. X <_ ( 1 / 2 ) ) -> ( 1 / 2 ) <_ X ) |
| 8 | 1 | simp3bi | |- ( X e. ( 0 [,] 1 ) -> X <_ 1 ) |
| 9 | 8 | adantr | |- ( ( X e. ( 0 [,] 1 ) /\ -. X <_ ( 1 / 2 ) ) -> X <_ 1 ) |
| 10 | 1re | |- 1 e. RR |
|
| 11 | 4 10 | elicc2i | |- ( X e. ( ( 1 / 2 ) [,] 1 ) <-> ( X e. RR /\ ( 1 / 2 ) <_ X /\ X <_ 1 ) ) |
| 12 | 3 7 9 11 | syl3anbrc | |- ( ( X e. ( 0 [,] 1 ) /\ -. X <_ ( 1 / 2 ) ) -> X e. ( ( 1 / 2 ) [,] 1 ) ) |