This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of a left-closed right-open interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elicore | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐶 ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ico | ⊢ [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) | |
| 2 | 1 | elixx3g | ⊢ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| 3 | 2 | biimpi | ⊢ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| 4 | 3 | simpld | ⊢ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ) |
| 5 | 4 | simp3d | ⊢ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → 𝐶 ∈ ℝ* ) |
| 6 | 5 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐶 ∈ ℝ* ) |
| 7 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐴 ∈ ℝ ) | |
| 8 | 3 | simprd | ⊢ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) |
| 9 | 8 | simpld | ⊢ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → 𝐴 ≤ 𝐶 ) |
| 10 | 9 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐴 ≤ 𝐶 ) |
| 11 | 4 | simp2d | ⊢ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → 𝐵 ∈ ℝ* ) |
| 12 | 11 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
| 13 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 14 | 13 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → +∞ ∈ ℝ* ) |
| 15 | 8 | simprd | ⊢ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → 𝐶 < 𝐵 ) |
| 16 | 15 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐶 < 𝐵 ) |
| 17 | pnfge | ⊢ ( 𝐵 ∈ ℝ* → 𝐵 ≤ +∞ ) | |
| 18 | 11 17 | syl | ⊢ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → 𝐵 ≤ +∞ ) |
| 19 | 18 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐵 ≤ +∞ ) |
| 20 | 6 12 14 16 19 | xrltletrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐶 < +∞ ) |
| 21 | xrre3 | ⊢ ( ( ( 𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 < +∞ ) ) → 𝐶 ∈ ℝ ) | |
| 22 | 6 7 10 20 21 | syl22anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐶 ∈ ℝ ) |