This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of a left-closed right-open interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elicore | |- ( ( A e. RR /\ C e. ( A [,) B ) ) -> C e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ico | |- [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |
|
| 2 | 1 | elixx3g | |- ( C e. ( A [,) B ) <-> ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ C /\ C < B ) ) ) |
| 3 | 2 | biimpi | |- ( C e. ( A [,) B ) -> ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ C /\ C < B ) ) ) |
| 4 | 3 | simpld | |- ( C e. ( A [,) B ) -> ( A e. RR* /\ B e. RR* /\ C e. RR* ) ) |
| 5 | 4 | simp3d | |- ( C e. ( A [,) B ) -> C e. RR* ) |
| 6 | 5 | adantl | |- ( ( A e. RR /\ C e. ( A [,) B ) ) -> C e. RR* ) |
| 7 | simpl | |- ( ( A e. RR /\ C e. ( A [,) B ) ) -> A e. RR ) |
|
| 8 | 3 | simprd | |- ( C e. ( A [,) B ) -> ( A <_ C /\ C < B ) ) |
| 9 | 8 | simpld | |- ( C e. ( A [,) B ) -> A <_ C ) |
| 10 | 9 | adantl | |- ( ( A e. RR /\ C e. ( A [,) B ) ) -> A <_ C ) |
| 11 | 4 | simp2d | |- ( C e. ( A [,) B ) -> B e. RR* ) |
| 12 | 11 | adantl | |- ( ( A e. RR /\ C e. ( A [,) B ) ) -> B e. RR* ) |
| 13 | pnfxr | |- +oo e. RR* |
|
| 14 | 13 | a1i | |- ( ( A e. RR /\ C e. ( A [,) B ) ) -> +oo e. RR* ) |
| 15 | 8 | simprd | |- ( C e. ( A [,) B ) -> C < B ) |
| 16 | 15 | adantl | |- ( ( A e. RR /\ C e. ( A [,) B ) ) -> C < B ) |
| 17 | pnfge | |- ( B e. RR* -> B <_ +oo ) |
|
| 18 | 11 17 | syl | |- ( C e. ( A [,) B ) -> B <_ +oo ) |
| 19 | 18 | adantl | |- ( ( A e. RR /\ C e. ( A [,) B ) ) -> B <_ +oo ) |
| 20 | 6 12 14 16 19 | xrltletrd | |- ( ( A e. RR /\ C e. ( A [,) B ) ) -> C < +oo ) |
| 21 | xrre3 | |- ( ( ( C e. RR* /\ A e. RR ) /\ ( A <_ C /\ C < +oo ) ) -> C e. RR ) |
|
| 22 | 6 7 10 20 21 | syl22anc | |- ( ( A e. RR /\ C e. ( A [,) B ) ) -> C e. RR ) |