This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of an integer in an extended open range of integers, extension added to the left. (Contributed by AV, 31-Aug-2025) Generalized by replacing the left border of the ranges. (Revised by SN, 18-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzoextl | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝐼 ∈ ℕ0 ) → 𝑍 ∈ ( 𝑀 ..^ ( 𝐼 + 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoel2 | ⊢ ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 2 | nn0pzuz | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ) → ( 𝐼 + 𝑁 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐼 + 𝑁 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 4 | fzoss2 | ⊢ ( ( 𝐼 + 𝑁 ) ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑀 ..^ 𝑁 ) ⊆ ( 𝑀 ..^ ( 𝐼 + 𝑁 ) ) ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 ..^ 𝑁 ) ⊆ ( 𝑀 ..^ ( 𝐼 + 𝑁 ) ) ) |
| 6 | 5 | sseld | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑍 ∈ ( 𝑀 ..^ ( 𝐼 + 𝑁 ) ) ) ) |
| 7 | 6 | syldbl2 | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑍 ∈ ( 𝑀 ..^ ( 𝐼 + 𝑁 ) ) ) |
| 8 | 7 | ancoms | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝐼 ∈ ℕ0 ) → 𝑍 ∈ ( 𝑀 ..^ ( 𝐼 + 𝑁 ) ) ) |