This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of an integer in an extended open range of integers, extension added to the left. (Contributed by AV, 31-Aug-2025) Generalized by replacing the left border of the ranges. (Revised by SN, 18-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzoextl | |- ( ( Z e. ( M ..^ N ) /\ I e. NN0 ) -> Z e. ( M ..^ ( I + N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoel2 | |- ( Z e. ( M ..^ N ) -> N e. ZZ ) |
|
| 2 | nn0pzuz | |- ( ( I e. NN0 /\ N e. ZZ ) -> ( I + N ) e. ( ZZ>= ` N ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( I e. NN0 /\ Z e. ( M ..^ N ) ) -> ( I + N ) e. ( ZZ>= ` N ) ) |
| 4 | fzoss2 | |- ( ( I + N ) e. ( ZZ>= ` N ) -> ( M ..^ N ) C_ ( M ..^ ( I + N ) ) ) |
|
| 5 | 3 4 | syl | |- ( ( I e. NN0 /\ Z e. ( M ..^ N ) ) -> ( M ..^ N ) C_ ( M ..^ ( I + N ) ) ) |
| 6 | 5 | sseld | |- ( ( I e. NN0 /\ Z e. ( M ..^ N ) ) -> ( Z e. ( M ..^ N ) -> Z e. ( M ..^ ( I + N ) ) ) ) |
| 7 | 6 | syldbl2 | |- ( ( I e. NN0 /\ Z e. ( M ..^ N ) ) -> Z e. ( M ..^ ( I + N ) ) ) |
| 8 | 7 | ancoms | |- ( ( Z e. ( M ..^ N ) /\ I e. NN0 ) -> Z e. ( M ..^ ( I + N ) ) ) |