This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of a finite interval of integers is either a member of the corresponding half-open integer range or the upper bound of the interval. (Contributed by AV, 5-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzr | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) ∨ 𝐾 = 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz2 | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | fzisfzounsn | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ..^ 𝑁 ) ∪ { 𝑁 } ) ) | |
| 3 | 2 | eleq2d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝐾 ∈ ( ( 𝑀 ..^ 𝑁 ) ∪ { 𝑁 } ) ) ) |
| 4 | elun | ⊢ ( 𝐾 ∈ ( ( 𝑀 ..^ 𝑁 ) ∪ { 𝑁 } ) ↔ ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) ∨ 𝐾 ∈ { 𝑁 } ) ) | |
| 5 | elsni | ⊢ ( 𝐾 ∈ { 𝑁 } → 𝐾 = 𝑁 ) | |
| 6 | 5 | orim2i | ⊢ ( ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) ∨ 𝐾 ∈ { 𝑁 } ) → ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) ∨ 𝐾 = 𝑁 ) ) |
| 7 | 4 6 | sylbi | ⊢ ( 𝐾 ∈ ( ( 𝑀 ..^ 𝑁 ) ∪ { 𝑁 } ) → ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) ∨ 𝐾 = 𝑁 ) ) |
| 8 | 3 7 | biimtrdi | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) ∨ 𝐾 = 𝑁 ) ) ) |
| 9 | 1 8 | mpcom | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) ∨ 𝐾 = 𝑁 ) ) |