This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element belongs to a filter iff any element below it does. (Contributed by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfilss | |- ( ( F e. ( Fil ` X ) /\ A C_ X ) -> ( A e. F <-> E. t e. F t C_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar | |- ( A C_ X -> ( E. t e. F t C_ A <-> ( A C_ X /\ E. t e. F t C_ A ) ) ) |
|
| 2 | 1 | adantl | |- ( ( F e. ( Fil ` X ) /\ A C_ X ) -> ( E. t e. F t C_ A <-> ( A C_ X /\ E. t e. F t C_ A ) ) ) |
| 3 | filfbas | |- ( F e. ( Fil ` X ) -> F e. ( fBas ` X ) ) |
|
| 4 | elfg | |- ( F e. ( fBas ` X ) -> ( A e. ( X filGen F ) <-> ( A C_ X /\ E. t e. F t C_ A ) ) ) |
|
| 5 | 3 4 | syl | |- ( F e. ( Fil ` X ) -> ( A e. ( X filGen F ) <-> ( A C_ X /\ E. t e. F t C_ A ) ) ) |
| 6 | 5 | adantr | |- ( ( F e. ( Fil ` X ) /\ A C_ X ) -> ( A e. ( X filGen F ) <-> ( A C_ X /\ E. t e. F t C_ A ) ) ) |
| 7 | fgfil | |- ( F e. ( Fil ` X ) -> ( X filGen F ) = F ) |
|
| 8 | 7 | eleq2d | |- ( F e. ( Fil ` X ) -> ( A e. ( X filGen F ) <-> A e. F ) ) |
| 9 | 8 | adantr | |- ( ( F e. ( Fil ` X ) /\ A C_ X ) -> ( A e. ( X filGen F ) <-> A e. F ) ) |
| 10 | 2 6 9 | 3bitr2rd | |- ( ( F e. ( Fil ` X ) /\ A C_ X ) -> ( A e. F <-> E. t e. F t C_ A ) ) |