This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: A morphism between extensible structures is a function between their
base sets. (Contributed by AV, 7-Mar-2020)
|
|
Ref |
Expression |
|
Hypotheses |
estrcbas.c |
|
|
|
estrcbas.u |
|
|
|
estrchomfval.h |
|
|
|
estrchom.x |
|
|
|
estrchom.y |
|
|
|
estrchom.a |
|
|
|
estrchom.b |
|
|
Assertion |
elestrchom |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
estrcbas.c |
|
| 2 |
|
estrcbas.u |
|
| 3 |
|
estrchomfval.h |
|
| 4 |
|
estrchom.x |
|
| 5 |
|
estrchom.y |
|
| 6 |
|
estrchom.a |
|
| 7 |
|
estrchom.b |
|
| 8 |
1 2 3 4 5 6 7
|
estrchom |
|
| 9 |
8
|
eleq2d |
|
| 10 |
7
|
fvexi |
|
| 11 |
10
|
a1i |
|
| 12 |
6
|
fvexi |
|
| 13 |
12
|
a1i |
|
| 14 |
11 13
|
elmapd |
|
| 15 |
9 14
|
bitrd |
|