This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eleqvrels2 | ⊢ ( 𝑅 ∈ EqvRels ↔ ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ∧ ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) ∧ 𝑅 ∈ Rels ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfeqvrels2 | ⊢ EqvRels = { 𝑟 ∈ Rels ∣ ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } | |
| 2 | dmeq | ⊢ ( 𝑟 = 𝑅 → dom 𝑟 = dom 𝑅 ) | |
| 3 | 2 | reseq2d | ⊢ ( 𝑟 = 𝑅 → ( I ↾ dom 𝑟 ) = ( I ↾ dom 𝑅 ) ) |
| 4 | id | ⊢ ( 𝑟 = 𝑅 → 𝑟 = 𝑅 ) | |
| 5 | 3 4 | sseq12d | ⊢ ( 𝑟 = 𝑅 → ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ↔ ( I ↾ dom 𝑅 ) ⊆ 𝑅 ) ) |
| 6 | cnveq | ⊢ ( 𝑟 = 𝑅 → ◡ 𝑟 = ◡ 𝑅 ) | |
| 7 | 6 4 | sseq12d | ⊢ ( 𝑟 = 𝑅 → ( ◡ 𝑟 ⊆ 𝑟 ↔ ◡ 𝑅 ⊆ 𝑅 ) ) |
| 8 | coideq | ⊢ ( 𝑟 = 𝑅 → ( 𝑟 ∘ 𝑟 ) = ( 𝑅 ∘ 𝑅 ) ) | |
| 9 | 8 4 | sseq12d | ⊢ ( 𝑟 = 𝑅 → ( ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ↔ ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) ) |
| 10 | 5 7 9 | 3anbi123d | ⊢ ( 𝑟 = 𝑅 → ( ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) ↔ ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ∧ ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) ) ) |
| 11 | 1 10 | rabeqel | ⊢ ( 𝑅 ∈ EqvRels ↔ ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ∧ ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) ∧ 𝑅 ∈ Rels ) ) |