This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eleqvrels2 | |- ( R e. EqvRels <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R /\ ( R o. R ) C_ R ) /\ R e. Rels ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfeqvrels2 | |- EqvRels = { r e. Rels | ( ( _I |` dom r ) C_ r /\ `' r C_ r /\ ( r o. r ) C_ r ) } |
|
| 2 | dmeq | |- ( r = R -> dom r = dom R ) |
|
| 3 | 2 | reseq2d | |- ( r = R -> ( _I |` dom r ) = ( _I |` dom R ) ) |
| 4 | id | |- ( r = R -> r = R ) |
|
| 5 | 3 4 | sseq12d | |- ( r = R -> ( ( _I |` dom r ) C_ r <-> ( _I |` dom R ) C_ R ) ) |
| 6 | cnveq | |- ( r = R -> `' r = `' R ) |
|
| 7 | 6 4 | sseq12d | |- ( r = R -> ( `' r C_ r <-> `' R C_ R ) ) |
| 8 | coideq | |- ( r = R -> ( r o. r ) = ( R o. R ) ) |
|
| 9 | 8 4 | sseq12d | |- ( r = R -> ( ( r o. r ) C_ r <-> ( R o. R ) C_ R ) ) |
| 10 | 5 7 9 | 3anbi123d | |- ( r = R -> ( ( ( _I |` dom r ) C_ r /\ `' r C_ r /\ ( r o. r ) C_ r ) <-> ( ( _I |` dom R ) C_ R /\ `' R C_ R /\ ( R o. R ) C_ R ) ) ) |
| 11 | 1 10 | rabeqel | |- ( R e. EqvRels <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R /\ ( R o. R ) C_ R ) /\ R e. Rels ) ) |