This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Element of the class of equivalence relations. (Contributed by Peter Mazsa, 24-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eleqvrels3 | ⊢ ( 𝑅 ∈ EqvRels ↔ ( ( ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ∧ 𝑅 ∈ Rels ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfeqvrels3 | ⊢ EqvRels = { 𝑟 ∈ Rels ∣ ( ∀ 𝑥 ∈ dom 𝑟 𝑥 𝑟 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑟 𝑦 → 𝑦 𝑟 𝑥 ) ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) } | |
| 2 | dmeq | ⊢ ( 𝑟 = 𝑅 → dom 𝑟 = dom 𝑅 ) | |
| 3 | breq | ⊢ ( 𝑟 = 𝑅 → ( 𝑥 𝑟 𝑥 ↔ 𝑥 𝑅 𝑥 ) ) | |
| 4 | 2 3 | raleqbidv | ⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑥 ∈ dom 𝑟 𝑥 𝑟 𝑥 ↔ ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ) ) |
| 5 | breq | ⊢ ( 𝑟 = 𝑅 → ( 𝑥 𝑟 𝑦 ↔ 𝑥 𝑅 𝑦 ) ) | |
| 6 | breq | ⊢ ( 𝑟 = 𝑅 → ( 𝑦 𝑟 𝑥 ↔ 𝑦 𝑅 𝑥 ) ) | |
| 7 | 5 6 | imbi12d | ⊢ ( 𝑟 = 𝑅 → ( ( 𝑥 𝑟 𝑦 → 𝑦 𝑟 𝑥 ) ↔ ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ) |
| 8 | 7 | 2albidv | ⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑟 𝑦 → 𝑦 𝑟 𝑥 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ) |
| 9 | breq | ⊢ ( 𝑟 = 𝑅 → ( 𝑦 𝑟 𝑧 ↔ 𝑦 𝑅 𝑧 ) ) | |
| 10 | 5 9 | anbi12d | ⊢ ( 𝑟 = 𝑅 → ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) ↔ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) |
| 11 | breq | ⊢ ( 𝑟 = 𝑅 → ( 𝑥 𝑟 𝑧 ↔ 𝑥 𝑅 𝑧 ) ) | |
| 12 | 10 11 | imbi12d | ⊢ ( 𝑟 = 𝑅 → ( ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ↔ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
| 13 | 12 | 2albidv | ⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
| 14 | 13 | albidv | ⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
| 15 | 4 8 14 | 3anbi123d | ⊢ ( 𝑟 = 𝑅 → ( ( ∀ 𝑥 ∈ dom 𝑟 𝑥 𝑟 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑟 𝑦 → 𝑦 𝑟 𝑥 ) ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ) ↔ ( ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) ) |
| 16 | 1 15 | rabeqel | ⊢ ( 𝑅 ∈ EqvRels ↔ ( ( ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ∧ 𝑅 ∈ Rels ) ) |