This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Element of the domain of the range product with restricted converse epsilon relation. This identifies the domain of the pet span ( R |X. (`' _E |`A ) ) : a B belongs to the domain of the span exactly when B is in A and has at least one x e. B and y with B R y . (Contributed by Peter Mazsa, 23-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldmxrncnvepres2 | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ↔ ( 𝐵 ∈ 𝐴 ∧ ∃ 𝑥 𝑥 ∈ 𝐵 ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmres | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom ( 𝑅 ↾ 𝐴 ) ↔ ( 𝐵 ∈ 𝐴 ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ) ) | |
| 2 | n0 | ⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐵 ) | |
| 3 | 2 | a1i | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐵 ) ) |
| 4 | 1 3 | anbi12d | ⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝐵 ∈ dom ( 𝑅 ↾ 𝐴 ) ∧ 𝐵 ≠ ∅ ) ↔ ( ( 𝐵 ∈ 𝐴 ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ∧ ∃ 𝑥 𝑥 ∈ 𝐵 ) ) ) |
| 5 | dmxrncnvepres | ⊢ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) = ( dom ( 𝑅 ↾ 𝐴 ) ∖ { ∅ } ) | |
| 6 | 5 | eleq2i | ⊢ ( 𝐵 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ↔ 𝐵 ∈ ( dom ( 𝑅 ↾ 𝐴 ) ∖ { ∅ } ) ) |
| 7 | eldifsn | ⊢ ( 𝐵 ∈ ( dom ( 𝑅 ↾ 𝐴 ) ∖ { ∅ } ) ↔ ( 𝐵 ∈ dom ( 𝑅 ↾ 𝐴 ) ∧ 𝐵 ≠ ∅ ) ) | |
| 8 | 6 7 | bitri | ⊢ ( 𝐵 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ↔ ( 𝐵 ∈ dom ( 𝑅 ↾ 𝐴 ) ∧ 𝐵 ≠ ∅ ) ) |
| 9 | 3anan32 | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ ∃ 𝑥 𝑥 ∈ 𝐵 ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ↔ ( ( 𝐵 ∈ 𝐴 ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ∧ ∃ 𝑥 𝑥 ∈ 𝐵 ) ) | |
| 10 | 4 8 9 | 3bitr4g | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ↔ ( 𝐵 ∈ 𝐴 ∧ ∃ 𝑥 𝑥 ∈ 𝐵 ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ) ) |