This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Element of the domain of the range product with restricted converse epsilon relation. This identifies the domain of the pet span ( R |X. (`' _E |`A ) ) : a B belongs to the domain of the span exactly when B is in A and has at least one x e. B and y with B R y . (Contributed by Peter Mazsa, 23-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldmxrncnvepres2 | |- ( B e. V -> ( B e. dom ( R |X. ( `' _E |` A ) ) <-> ( B e. A /\ E. x x e. B /\ E. y B R y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmres | |- ( B e. V -> ( B e. dom ( R |` A ) <-> ( B e. A /\ E. y B R y ) ) ) |
|
| 2 | n0 | |- ( B =/= (/) <-> E. x x e. B ) |
|
| 3 | 2 | a1i | |- ( B e. V -> ( B =/= (/) <-> E. x x e. B ) ) |
| 4 | 1 3 | anbi12d | |- ( B e. V -> ( ( B e. dom ( R |` A ) /\ B =/= (/) ) <-> ( ( B e. A /\ E. y B R y ) /\ E. x x e. B ) ) ) |
| 5 | dmxrncnvepres | |- dom ( R |X. ( `' _E |` A ) ) = ( dom ( R |` A ) \ { (/) } ) |
|
| 6 | 5 | eleq2i | |- ( B e. dom ( R |X. ( `' _E |` A ) ) <-> B e. ( dom ( R |` A ) \ { (/) } ) ) |
| 7 | eldifsn | |- ( B e. ( dom ( R |` A ) \ { (/) } ) <-> ( B e. dom ( R |` A ) /\ B =/= (/) ) ) |
|
| 8 | 6 7 | bitri | |- ( B e. dom ( R |X. ( `' _E |` A ) ) <-> ( B e. dom ( R |` A ) /\ B =/= (/) ) ) |
| 9 | 3anan32 | |- ( ( B e. A /\ E. x x e. B /\ E. y B R y ) <-> ( ( B e. A /\ E. y B R y ) /\ E. x x e. B ) ) |
|
| 10 | 4 8 9 | 3bitr4g | |- ( B e. V -> ( B e. dom ( R |X. ( `' _E |` A ) ) <-> ( B e. A /\ E. x x e. B /\ E. y B R y ) ) ) |