This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ( R |X. (`' _E |`A ) ) -coset in its domain quotient. (Contributed by Peter Mazsa, 23-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eceldmqsxrncnvepres | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋 ) → ( [ 𝐵 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∈ ( dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) / ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ∧ [ 𝐵 ] 𝑅 ≠ ∅ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrncnvepresex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑋 ) → ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∈ V ) | |
| 2 | eceldmqs | ⊢ ( ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∈ V → ( [ 𝐵 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∈ ( dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) / ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) ↔ 𝐵 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑋 ) → ( [ 𝐵 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∈ ( dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) / ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) ↔ 𝐵 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) ) |
| 4 | 3 | 3adant2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋 ) → ( [ 𝐵 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∈ ( dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) / ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) ↔ 𝐵 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) ) |
| 5 | eldmxrncnvepres | ⊢ ( 𝐵 ∈ 𝑊 → ( 𝐵 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ∧ [ 𝐵 ] 𝑅 ≠ ∅ ) ) ) | |
| 6 | 5 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋 ) → ( 𝐵 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ∧ [ 𝐵 ] 𝑅 ≠ ∅ ) ) ) |
| 7 | 4 6 | bitrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋 ) → ( [ 𝐵 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ∈ ( dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) / ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) ↔ ( 𝐵 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ∧ [ 𝐵 ] 𝑅 ≠ ∅ ) ) ) |