This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Element of the domain of a restriction to a singleton. (Contributed by Peter Mazsa, 12-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldmressnALTV | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ↔ ( 𝐵 = 𝐴 ∧ 𝐴 ∈ dom 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmres | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ↔ ( 𝐵 ∈ { 𝐴 } ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ) ) | |
| 2 | elsng | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ { 𝐴 } ↔ 𝐵 = 𝐴 ) ) | |
| 3 | eldmg | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom 𝑅 ↔ ∃ 𝑦 𝐵 𝑅 𝑦 ) ) | |
| 4 | 3 | bicomd | ⊢ ( 𝐵 ∈ 𝑉 → ( ∃ 𝑦 𝐵 𝑅 𝑦 ↔ 𝐵 ∈ dom 𝑅 ) ) |
| 5 | 2 4 | anbi12d | ⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝐵 ∈ { 𝐴 } ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ↔ ( 𝐵 = 𝐴 ∧ 𝐵 ∈ dom 𝑅 ) ) ) |
| 6 | 1 5 | bitrd | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ↔ ( 𝐵 = 𝐴 ∧ 𝐵 ∈ dom 𝑅 ) ) ) |
| 7 | eqelb | ⊢ ( ( 𝐵 = 𝐴 ∧ 𝐵 ∈ dom 𝑅 ) ↔ ( 𝐵 = 𝐴 ∧ 𝐴 ∈ dom 𝑅 ) ) | |
| 8 | 6 7 | bitrdi | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ↔ ( 𝐵 = 𝐴 ∧ 𝐴 ∈ dom 𝑅 ) ) ) |