This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Element of the domain of a restriction to a singleton. (Contributed by Peter Mazsa, 12-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldmressnALTV | |- ( B e. V -> ( B e. dom ( R |` { A } ) <-> ( B = A /\ A e. dom R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmres | |- ( B e. V -> ( B e. dom ( R |` { A } ) <-> ( B e. { A } /\ E. y B R y ) ) ) |
|
| 2 | elsng | |- ( B e. V -> ( B e. { A } <-> B = A ) ) |
|
| 3 | eldmg | |- ( B e. V -> ( B e. dom R <-> E. y B R y ) ) |
|
| 4 | 3 | bicomd | |- ( B e. V -> ( E. y B R y <-> B e. dom R ) ) |
| 5 | 2 4 | anbi12d | |- ( B e. V -> ( ( B e. { A } /\ E. y B R y ) <-> ( B = A /\ B e. dom R ) ) ) |
| 6 | 1 5 | bitrd | |- ( B e. V -> ( B e. dom ( R |` { A } ) <-> ( B = A /\ B e. dom R ) ) ) |
| 7 | eqelb | |- ( ( B = A /\ B e. dom R ) <-> ( B = A /\ A e. dom R ) ) |
|
| 8 | 6 7 | bitrdi | |- ( B e. V -> ( B e. dom ( R |` { A } ) <-> ( B = A /\ A e. dom R ) ) ) |